1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
| #ifndef UTILS_DEEP_ITERATOR_H
#define UTILS_DEEP_ITERATOR_H
#include <iterator>
namespace utils {
/*
permet d'itérer sur des types imbriqués:
un type extérieur est itérable et permet d'accéder à un type intérieur
ce type intérieur qui est itérable et donne accès à des valeurs
cas d'usage initial: map<K1, map< K2, V> >
cas d'usage secondaires vector< list< V > >
cas subsidiaire, requis: struct { list< struct{list<V>} > } (en fait, Animal={ list<Presta={list<Resultat>}> })
*/
template< class C >
typename C::iterator begin(C & c) {return c.begin();}
template< class C >
typename C::const_iterator begin(C const& c) {return c.begin();}
template< class C >
typename C::const_iterator cbegin(C const& c) {return begin(c);}
template< class T, std::size_t N >
T* begin( T (&array)[N] ) {return array;}
template< class C >
typename C::iterator end(C & c) {return c.end();}
template< class C >
typename C::const_iterator end(C const& c) {return c.end();}
template< class C >
typename C::const_iterator cend(C const& c) {return end(c);}
template< class T, std::size_t N >
T* end( T (&array)[N] ) {return array+N;}
template <typename T, typename U>
struct const_alike {typedef U type;};
template <typename T, typename U>
struct const_alike<T&, U> {typedef U& type;};
template <typename T, typename U>
struct const_alike<T const, U> {typedef U const type;};
template <typename T, typename U>
struct const_alike<T const&, U> {typedef U const& type;};
template <typename T>
struct Iterator {typedef typename T::iterator type;};
template <typename T>
struct Iterator<T const> {typedef typename T::const_iterator type;};
template<typename T>
class has_mapped_type {
typedef char yes[1];
typedef char no [2];
template<typename C> static yes& test(typename C::mapped_type *);
template<typename C> static no& test(...);
public:
static bool const value = sizeof(test<T>(0)) == sizeof(yes);
};
template <typename T, bool = has_mapped_type<T>::value>
struct iterated_value_of {typedef typename T::mapped_type type;};
template <typename T>
struct iterated_value_of<T, false> {typedef typename T::value_type type;};
//SFINAE deduction
template<typename It>
typename const_alike<typename It::reference, typename It::value_type::second_type>::type
iterator_value(It const& it, typename It::value_type::second_type* =0) {return it->second;}
template<typename It>
typename It::reference
iterator_value(It const& it, ...) {return *it;}
template <
typename T,
typename It = typename Iterator<T>::type,
It Begin(T &) = begin, It End(T &) = end,
typename V = typename const_alike<T, typename iterated_value_of<T>::type>::type
>
struct IterableTraits {
typedef T iterable;
typedef It iterator;
typedef V value_type;
typedef value_type& reference;
static iterator begin(iterable & t) {return Begin(t);}
static iterator end(iterable & t) {return End(t);}
};
/*
expected uses
map<map<>> : outer begin to end. (begin and end, !=, ++, *)
map<map<>> : inner begin to end, given a outer key
begin and end, !=, ++, *
GrosMachin={ list<Machin={list<Bidule>}> }:
tous les résultats.
*/
//utiliser des types constants pour iterer de manière constante
template <
typename Outer,
typename Outer_I_T = IterableTraits<Outer>,
typename Inner_I_T = IterableTraits<typename Outer_I_T::value_type>
>
class deep_iterator {
private:
typedef typename Outer_I_T::iterator OuterIt;
typedef typename Inner_I_T::iterator InnerIt;
OuterIt outer_it;
mutable InnerIt inner_it;
mutable enum {ready, pending_begin, pending_end} state;
InnerIt inner_begin() const {return Inner_I_T::begin(iterator_value(outer_it));}
InnerIt inner_end () const {return Inner_I_T::end (iterator_value(outer_it));}
void stabilize() const {
if (state==ready) return;
inner_it = (state==pending_begin) ? inner_begin() : inner_end();
state = ready;
}
public:
typedef typename Inner_I_T::value_type value_type;
deep_iterator(OuterIt const& it): outer_it(it), state(pending_begin) {}
value_type const& operator*() const {
stabilize();
return iterator_value(inner_it);
}
value_type const& value() const {
return operator*();
}
deep_iterator & operator++() {
if (++inner_it == inner_end()) {
++outer_it;
state = pending_begin;
}
return *this;
}
deep_iterator & operator--() {
if (inner_it == inner_begin()) {
--outer_it;
state = pending_end;
}
return *this;
}
deep_iterator operator++(int) {
deep_iterator tmp(*this);
operator++();
return tmp;
}
deep_iterator operator--(int) {
deep_iterator tmp(*this);
operator--();
return tmp;
}
bool operator==(deep_iterator const& o) const {
if (outer_it!=o.outer_it) return false;
stabilize();
o.stabilize();
return (inner_it==o.inner_it);
}
bool operator< (deep_iterator const& o) const {
if (o.outer_it < outer_it) return false;
if ( outer_it < o.outer_it) return true;
stabilize();
o.stabilize();
return inner_it < o.inner_it;
}
bool operator!=(deep_iterator const& o) const {return !operator==(o);}
bool operator<=(deep_iterator const& o) const {return !(o<*this);}
bool operator> (deep_iterator const& o) const {return o< *this;}
bool operator>=(deep_iterator const& o) const {return o<=*this;}
};
}//utils::
#endif |
Partager