Special Values
IEEE reserves exponent field values of all 0s and all 1s to denote special values in the floating-point scheme.
Zero
As mentioned above, zero is not directly representable in the straight format, due to the assumption of a leading 1 (we'd need to specify a true zero mantissa to yield a value of zero). Zero is a special value denoted with an exponent field of zero and a fraction field of zero. Note that -0 and +0 are distinct values, though they both compare as equal.
Denormalized
If the exponent is all 0s, but the fraction is non-zero (else it would be interpreted as zero), then the value is a denormalized number, which does not have an assumed leading 1 before the binary point. Thus, this represents a number (-1)s x 0.f x 2-126, where s is the sign bit and f is the fraction. For double precision, denormalized numbers are of the form (-1)s x 0.f x 2-1022. From this you can interpret zero as a special type of denormalized number.
Infinity
The values +infinity and -infinity are denoted with an exponent of all 1s and a fraction of all 0s. The sign bit distinguishes between negative infinity and positive infinity. Being able to denote infinity as a specific value is useful because it allows operations to continue past overflow situations. Operations with infinite values are well defined in IEEE floating point.
Not A Number
The value NaN (Not a Number) is used to represent a value that does not represent a real number. NaN's are represented by a bit pattern with an exponent of all 1s and a non-zero fraction. There are two categories of NaN: QNaN (Quiet NaN) and SNaN (Signalling NaN).
A QNaN is a NaN with the most significant fraction bit set. QNaN's propagate freely through most arithmetic operations. These values pop out of an operation when the result is not mathematically defined.
An SNaN is a NaN with the most significant fraction bit clear. It is used to signal an exception when used in operations. SNaN's can be handy to assign to uninitialized variables to trap premature usage.
Semantically, QNaN's denote indeterminate operations, while SNaN's denote invalid operations.
Partager