| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 
 | //	https://www.arndt-bruenner.de/mathe/10/parabeltangente.htm#:~:text=Somit%20ergibt%20sich%20f%C3%BCr%20die%20Tangente%20an%20die,jeden%20Punkt%20x%20durch%202ax%20%2B%20b%20gegeben.
 
#include <iostream>
#include <string>
#include <vector>
#include <iterator>
#include <initializer_list>
 
class Point
{
private:
	float mX, mY;
public:
	Point() :
		mX{ 0 },
		mY{ 0 }
	{}
	Point(float x, float y) :
		mX{ x },
		mY{ y }
	{}
	Point(Point const& p) :
		mX{ p.mX },
		mY{ p.mY }
	{}
	Point& operator=(Point const& rhs) {
		mX = rhs.mX;
		mY = rhs.mY;
		return *this;
	}
	float x() const
	{
		return mX;
	}
	float y() const
	{
		return mY;
	}
	void set_x(float xx)
	{
		mX = xx;
	}
	void set_y(float yy)
	{
		mY = yy;
	}
	friend std::ostream&
		operator<<(std::ostream& os, Point const& p) {
		return os << "x = " << p.mX << " y = " << p.mY;
	}
};
class Kurve : public Point {
public:
	std::vector<Point> kur;
 
 
public:
	Kurve(std::initializer_list<Point> liste) : kur{ liste } {}
	Kurve(Point p) {
		kur.push_back(p);
	}
 
	std::vector<Point>& get_kur() {
		return kur;
	}
};
 
 
class Segment
{
private:
	Point mA, mB;
public:
	Segment(Point A, Point B) :
		mA{ A }, mB{ B }
	{}
	float A() const		// Coefficient A: y = Ax + B
	{
		return (mA.y() - mB.y()) / (mA.x() - mB.x());
		// source: https://calculis.net/droite
					// A completer
	}
	float B() const		// Coefficient B: y = Ax + B
	{
		return mA.y() - A() * mA.x();
		// source: https://calculis.net/droite
					// A completer
	}
	Point intersection(Segment const& other)
	{
		float x = (other.B() - B()) / (A() - other.A());
		// source: https://calculis.net/intersection
		// A completer
 
		// A completer
		return Point{ x , A() * x + B() };
	}
	std::string equation() const
	{
		return "y = " + std::to_string(A()) + "x + " + std::to_string(B());
	}
};
int main() {
	Point poiA(0, 0);
	Point poiB(2, pow(2, 2));
 
 
	Kurve parabole({ 0,0 });
	for (float i = 0; i < 100; i++)
		parabole.kur.push_back({ i * 0.1f,pow(i * 0.1f,2.0f) });
 
	float xQ, yQ;
	std::cout << "Veuillez calculer le point à partir duquel la tangente est calculée sur la parabole:   " << std::endl;
	std::cout << "Sil vous plaît x: ";
	std::cin >> xQ;
 
	std::cout << std::endl;
	std::cout << "Sil vous plaît y: ";
	std::cin >> yQ;
 
	std::cout << std::endl;
 
 
	Kurve parabole_Bsp_1({ 0.0f,0.0f });
	for (float i = -30.0f; i < 100; i++) {
		parabole_Bsp_1.kur.push_back({ i * 0.1f, -3 * pow(i * 0.1f,2.0f) + 2*i*0.1f + 1 });
	}
 
	// Calculer la tangente , Point Q connu Q(-1,-1), La tangente a une forme y = Ax + B , Parabole f(x) = -3x^2 + 2x +1
	// Point de contact T(xT,yT) , yT = A*xT + B, A est tangente de langle de la tangente A = f'(x) = -6x + 2
 
 
 
	// Parabel yT = -3xT^2 + 2xT +1  ; Tangente yT = (-6xT +2) xT + B
 
 
 
 
	//  https://www.youtube.com/watch?v=ql_w5paclOs
 
	// f(x)Tangente = f(x)Parabel
	// -3x^2 +2x + 1 = AxO + B = (-6x + 2) * xQ + B
	// -3 * x^2  + 2 * x * xQ + 1 = -6 * x^2 + 2x + B 
	// 3 *  x^2 - 6 * xQ * x + 2 * xQ - yQ + 1 = 0
 
 
 
	float a = 3;
 
	float b = -6 * xQ;
 
	float c =  2 * xQ - yQ + 1;
 
	float xT1 = ((-1) * b + std::sqrt(pow(b, 2.0f) - 4 * a * c)) / (2 * a);
 
	float xT2 = ((-1) * b - std::sqrt(pow(b, 2.0f) - 4 * a * c)) / (2 * a);
 
	float A1 = -6.0f * xT1 + 2;
	float A2 = -6.0f * xT2 + 2;
	float B1 = yQ - A1 * xQ;    
	float B2 = yQ - A2 * xQ;
 
	float yT1 = A1 * xT1 + B1;
	float yT2 = A2 * xT2 + B2;
 
	Point Q(xQ, yQ);
	Point T1(xT1, yT1);
	Point T2(xT2, yT2);
	Segment tangente1(Q, T1);
	std::cout << tangente1.equation() << std::endl;
	Segment tangente2(Q, T2);
	std::cout << tangente2.equation() << std::endl;
 
 
 
	std::cout << "Le point de contact de la tangente1 et de la parabole est "
		<< "T1(" << xT1 << ", " << yT1 << ")" << std::endl;
	std::cout << "Le point de contact de la tangente1 et de la parabole est "
		<< "T2(" << xT2 << ", " << yT2 << ")" << std::endl;
 
 
	auto it = parabole_Bsp_1.kur.begin();
	while (it != parabole_Bsp_1.kur.end()) {
		std::cout << "parabole(x, y) " << *it++ << std::endl;
 
	}
	std::cout << "Hiperbole " << std::endl;
	Kurve hiperbole({ 0,0 });
	for (float i = 0; i < 100; i++)
		hiperbole.kur.push_back({ i * 0.1f,pow(i * 0.1f,.5f) });
 
 
 
 
 
	auto it_h = hiperbole.kur.begin();
	while (it_h != hiperbole.kur.end()) {
		std::cout << *it_h++ << std::endl;
 
	}
 
 
	Point pA(3.5f, 4.0f);
	Point pB(-4.0f, 2.0f);
	Point pC(2.0f, -2.0f);
	Point pD(-2.0f, 5.0f);
	std::cout << "Point d'intersection des deux lignes droites: " << std::endl;
	Segment Line1(pA, pB);
	std::cout << Line1.equation() << std::endl;
	Segment Line2(pC, pD);
	std::cout << Line2.equation() << std::endl;
 
	std::cout << Line1.intersection(Line2);	// Point d'intersection des deux lignes droites | 
Partager