Salut!

Je suis à la recherche d'un algorithme de chiffrement AES de 128 bits en c++.

J'ai essayer ceci :

Le .h

Code cpp : Sélectionner tout - Visualiser dans une fenêtre à part
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
 
#ifndef AES_ENC_H
#define AES_ENC_H
#include <iostream>
#include <openssl/evp.h>
#include <openssl/err.h>
#include <ctime>
#include <openssl/rand.h>
#include <openssl/aes.h>
#include "../Core/utilities.h"
#include "../Math/maths.h"
#include "export.hpp"
#include <string.h>
#include <stdlib.h>
#include "bigInt.hpp"
#include <array>
#include <memory>
/**
  *\namespace odfaeg
  * the namespace of the Opensource Development Framework Adapted for Every Games.
  */
namespace odfaeg {
    namespace network {
        /**
          * \file aes.h
          * \class AES_ENC
          * \brief Perform symetric encryptions with the aes algorithm.
          * \author Duroisin.L
          * \version 1.0
          * \date 1/02/2014
          *
          */
        class ODFAEG_NETWORK_API AES_ENC {
        public:
            struct AESWord128 {
                AESWord128() {
                    byte1 = byte2 = byte3 = byte4 = 0;
                }
                AESWord128 (unsigned char b1, unsigned char b2, unsigned char b3, unsigned char b4) : byte1(b1), byte2(b2), byte3(b3), byte4(b4) {
 
                }
                AESWord128 rotWord() {
                    AESWord128 out (byte4, byte3, byte2, byte1);
                    return out;
                }
                AESWord128 operator^(const AESWord128& w) {
                    AESWord128 out(byte1 ^ w.byte1, byte2 ^ w.byte2, byte3 ^ w.byte3, byte4 ^ w.byte4);
                    return out;
                }
                unsigned char byte1, byte2, byte3, byte4;
            };
 
            AES_ENC() {
                ossl_key = new unsigned char[32];
                iv = new unsigned char[32];
                aesSalt = new unsigned char[8];
                e_ctx = new EVP_CIPHER_CTX;
                d_ctx = new EVP_CIPHER_CTX;
                aesPass = ossl_generateKey(256);
                generateKey();
            }
            /**
            * \fn unisgned char encrypt(const unsigned char* data, int dataSize, int* newSize)
            * \brief encrypt the data.
            * \param data : the data to encrypt.
            * \param dataSize : the size of the data to encrypt.
            * \param newSize : the size of the encrypted data.
            * \return the encrypted data.
            */
            unsigned char* ossl_encrypt(const unsigned char* data, int dataSize, int* newSize);
            /**
            * \fn unsigned char* decrypt(const unsigned char* encData, int dataSize, int* newSize)
            * \brief decrypt the data.
            * \param encData : the encrypted data.
            * \param dataSize : the size of the encrypted data.
            * \param newSize : the size of the data.
            * \return the data.
            */
            unsigned char* ossl_decrypt(const unsigned char* encData, int dataSize, int* newSize);
            /**
            * \fn char* getKey()
            * \brief get the key used to hash the aes key.
            * \return the key.
            */
            char* ossl_getKey ();
            /**
            * \fn char* getIv()
            * \brief get the iv used to hash the key.
            * \return the iv.
            */
            char* ossl_getIv();
            /**
            * \fn void setKey (char* key);
            * \brief set the key used to hash the aes key.
            * \param key : the key.
            */
            void ossl_setKey (char* key);
            /**
            * \fn void setIv (char* iv);
            * \brief set the iv used to hash the key.
            * \param iv : the iv.
            */
            void ossl_setIv (char* iv);
            unsigned char* encrypt(const unsigned char* mess, std::size_t dataSize, std::size_t& newSize);
            unsigned char* decrypt(const unsigned char* mess, size_t dataSize, size_t& newSize);
            ~AES_ENC() {
                delete[] ossl_key;
                delete[] iv;
                delete[] aesSalt;
                delete[] aesPass;
                EVP_CIPHER_CTX_cleanup(d_ctx);
                EVP_CIPHER_CTX_cleanup(e_ctx);
                delete e_ctx;
                delete d_ctx;
            }
        private:
            /**
            * \fn unsigned char* generateKey(int length)
            * \brief generate an aes key with the given length.
            * \param the length of the key.
            * \return the pass used to hash the key.
            */
            unsigned char* ossl_generateKey(int length) {
                size = length;
                aesPass = new unsigned char[size / 8];
                if (RAND_bytes(aesPass, size / 8) == 0)
                    std::cerr<<"fail to generate aes pass"<<std::endl;
                int nrounds = 5;
                if (RAND_bytes(aesSalt, 8) == 0)
                    std::cerr<<"fail to generate random salt"<<std::endl;
                /*
 
                * Gen key & IV for AES 256 CBC mode. A SHA1 digest is used to hash the 			* supplied key material.
                * nrounds is the number of times the we hash the material. More rounds 			* are more secure but
                * slower.
                */
                if (EVP_BytesToKey(EVP_aes_256_cbc(), EVP_sha1(), aesSalt, aesPass, 			    size / 8, nrounds, ossl_key, iv) == 0)
                    std::cerr<<"Failed to hash the aes key."<<std::endl;
                EVP_CIPHER_CTX_init(e_ctx);
                //EVP_EncryptInit_ex(e_ctx, EVP_aes_256_cbc(), NULL, key, iv);
                EVP_CIPHER_CTX_init(d_ctx);
                //EVP_DecryptInit_ex(d_ctx, EVP_aes_256_cbc(), NULL, key, iv);
                return aesPass;
            }
        private :
            void generateKey();
            std::array<std::array<int, 4>, 4> encryptBloc(std::array<std::array<int, 4>, 4> matrix);
            std::array<std::array<int, 4>, 4> decryptBloc(std::array<std::array<int, 4>, 4> matrix);
            std::array<std::array<int, 4>, 4> addRoundKey(std::array<std::array<int, 4>, 4> in, std::array<int, 16> key);
            std::array<int, 176>  keyExpansion(std::array<int, 16> k);
            std::array<int, 16>  getRoundKey(int round);
            AESWord128 subWord(AESWord128 w);
            int size; /**> the size of the key.*/
            std::string aes_key; /**> the aes key.*/
            unsigned char *ossl_key, *iv, *aesSalt, *aesPass; /**> the key, the iv, the salt and the pass used to hash the aes key.*/
            EVP_CIPHER_CTX* e_ctx, *d_ctx; /**>The ciphers used to encrypt and decrypt the data. */
            const int nb = 4;    //Nombre de colonne (toujours 4 pour AES)
            const int nk = 4;    //Nombre de mot dans la clé (un mot = 4 octet) (4 pour AES-128)
            const int nr = 10;    //Nombre de tour de ronde (10 pour AES-128)
 
            std::array<int, 16> key;
            std::array<int, 176> expandKey;
            std::array<AESWord128, 16> rCon;
            std::array<std::array<int, 4>, 4> subBytes(std::array<std::array<int, 4>, 4> in);
            std::array<std::array<int, 4>, 4> shiftRows(std::array<std::array<int, 4>, 4> in);
            std::array<std::array<int, 4>, 4> mixColumns(std::array<std::array<int, 4>, 4> out);
            std::array<std::array<int, 4>, 4> invSubBytes(std::array<std::array<int, 4>, 4> in);
            std::array<std::array<int, 4>, 4> invShiftRows(std::array<std::array<int, 4>, 4> in);
            std::array<std::array<int, 4>, 4> invMixColumns(std::array<std::array<int, 4>, 4> in);
            int xtime(int x);
            int x_time(int x, int y);
            int gf2Mult (int x, int y);
            void addTab(unsigned char in[], std::array<std::array<int, 4>, 4> add, int pos);
            std::array<unsigned char, 4> intToBytes(int i);
            int bytesToInt(std::array<unsigned char, 4> b);
            //La boite-S pour l'operation SubBytes
            static const int sBox[256];
            // la boite-S pour l'operation InvSubBytes
            static const int invSBox[256];
        };
    }
}
#endif // AES_ENC

Le .cpp

Code cpp : Sélectionner tout - Visualiser dans une fenêtre à part
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
 
#include "../../../include/odfaeg/Network/aes.h"
namespace odfaeg {
    namespace network {
        const int AES_ENC::sBox[] = {
                0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE,
                0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4,
                0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7,
                0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15, 0x04, 0xC7, 0x23, 0xC3,
                0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75, 0x09,
                0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3,
                0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE,
                0x39, 0x4A, 0x4C, 0x58, 0xCF, 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85,
                0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92,
                0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C,
                0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19,
                0x73, 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14,
                0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2,
                0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5,
                0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08, 0xBA, 0x78, 0x25,
                0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
                0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86,
                0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E,
                0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF, 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42,
                0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
            };
        const int AES_ENC::invSBox[] = {
                0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81,
                0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E,
                0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23,
                0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E, 0x08, 0x2E, 0xA1, 0x66,
                0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25, 0x72,
                0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65,
                0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46,
                0x57, 0xA7, 0x8D, 0x9D, 0x84, 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A,
                0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA,
                0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91,
                0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6,
                0x73, 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8,
                0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F,
                0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B, 0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2,
                0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4, 0x1F, 0xDD, 0xA8,
                0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
                0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93,
                0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB,
                0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6,
                0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
            };
        using namespace std;
        unsigned char* AES_ENC::ossl_encrypt(const unsigned char* data, int dataSize, int* newSize) {
            int cLen = dataSize+AES_BLOCK_SIZE;
            int fLen = 0;
            unsigned char *encData = new unsigned char[cLen];
            if (!EVP_EncryptInit_ex(e_ctx, EVP_aes_256_cbc(), nullptr, ossl_key, iv))
                return nullptr;
            if (!EVP_EncryptUpdate(e_ctx, encData, &cLen, data, dataSize))
                return nullptr;
            if(!EVP_EncryptFinal_ex(e_ctx, encData+cLen, &fLen)) {
                return nullptr;
            }
            *newSize = cLen + fLen;
 
            return encData;
        }
        unsigned char* AES_ENC::ossl_decrypt(const unsigned char* encData, int dataSize, int* newSize) {
            int pLen = dataSize;
            int fLen = 0;
            unsigned char *data = new unsigned char[pLen];
            if (!EVP_DecryptInit_ex(d_ctx, EVP_aes_256_cbc(), nullptr, ossl_key, iv))
                return nullptr;
            if (!EVP_DecryptUpdate(d_ctx, data, &pLen, encData, dataSize))
                return nullptr;
 
            if (!EVP_DecryptFinal_ex(d_ctx, data+pLen, &fLen)) {
                char* err = (char*) malloc(130);
                ERR_load_crypto_strings();
                ERR_error_string(ERR_get_error(), err);
                fprintf(stderr, "Error encrypting message: %s\n", err);
                free(err);
            }
            *newSize = pLen + fLen;
            return data;
        }
        void AES_ENC::ossl_setKey(char* sKey) {
           ossl_key = new unsigned char[size / 8];
           memcpy(ossl_key, (unsigned char*) sKey, strlen(sKey));
           //key[strlen(sKey) +  1] = '\0';
        }
        void AES_ENC::ossl_setIv(char* sIv) {
           iv = new unsigned char[size / 8];
           memcpy(iv, (unsigned char*) sIv, strlen(sIv));
           //iv[strlen(sIv) +  1] = '\0';
        }
        char* AES_ENC::ossl_getKey() {
           return (char*) ossl_key;
        }
        char* AES_ENC::ossl_getIv() {
           return (char*) iv;
        }
        void AES_ENC::generateKey() {
            BigInt k = BigInt::genRandom(64, 16);
            string s = k.toStr(16);
            for (unsigned int i = 0; i < nk * 4; i++) {
                BigInt n (s.substr(i, 1), 16);
                key[i] = core::conversionStringInt(n.toStr(10));
            }
            rCon[1] = AESWord128(1, 0, 0, 0);
            for (int i = 2; i < 15; i++) {
                rCon[i] = AESWord128(gf2Mult(2,rCon[i-1].byte1),0,0,0);
            }
            expandKey = keyExpansion(key);
        }
        /**
         * Permet de chiffrer une suite de bytes
         */
        unsigned char* AES_ENC::encrypt(const unsigned char* mess, size_t dataSize, size_t& newSize) {
            array<array<int, 4>, 4> tmpbloc;
            int i = 0, j = 0;
            array<unsigned char, 4> tmpSize;
            newSize = ((dataSize/16)*16)+32;
            unsigned char* res = new unsigned char[newSize];
 
            //J'ai choisi d'ajouter un bloc contenant la taille du message d'origine car
            //une fois chiffrer le message est de taille multiple a 16 donc il faudra la taille d'origine
            //pour dechiffrer
            tmpSize = intToBytes(dataSize);
            tmpbloc[0][0] = tmpSize[0] + 128;
            tmpbloc[0][1] = tmpSize[1] + 128;
            tmpbloc[0][2] = tmpSize[2] + 128;
            tmpbloc[0][3] = tmpSize[3] + 128;
            for(i =4;i<16;i++)
                tmpbloc[i/4][i%4] = 0;
 
            tmpbloc = encryptBloc(tmpbloc);
            i=0;
            addTab(res,tmpbloc,i);
 
            while (i<dataSize) {
                //Creation du bloc de 16bytes à chiffrer
                if (i+16<=dataSize){
                    for (j=0; j<16;j++){
                        tmpbloc[j/4][j%4] = mess[i+j] + 128;
                    }
                }else{
                    j=0;
                    for (int k=i; k<dataSize;k++){
                        tmpbloc[j/4][j%4] = mess[k] + 128;
                        j++;
                    }
                    for (int k = j; k<16;k++)
                        tmpbloc[j/4][j%4] = 0;
                }
 
                //Chiffrement des données
                tmpbloc = encryptBloc(tmpbloc);
 
                //Ajout des données au tableau de resultat
                addTab(res,tmpbloc,i+16);
 
                i+=16;
            }
 
            return res;
        }
 
        /**
         * Permet de dechiffrer une suite de bytes
         */
        unsigned char* AES_ENC::decrypt(const unsigned char* mess, size_t dataSize, size_t& newSize) {
 
            array<unsigned char, 4> tmpSize;
            int pos = 0;
            array<array<int, 4>, 4> tmpbloc;
            for (int i=0;i<16;i++)
                tmpbloc[i/4][i%4] = mess[i] + 128;
            tmpbloc = decryptBloc(tmpbloc);
 
            tmpSize[0] = (unsigned char)(tmpbloc[0][0] - 128);
            tmpSize[1] = (unsigned char)(tmpbloc[0][1] - 128);
            tmpSize[2] = (unsigned char)(tmpbloc[0][2] - 128);
            tmpSize[3] = (unsigned char)(tmpbloc[0][3] - 128);
            for (unsigned int i = 0; i < 4; i++)
                std::cout<<(int) tmpSize[i]<<std::endl;
            newSize = bytesToInt(tmpSize);
            std::cout<<newSize<<std::endl;
            unsigned char* res = new unsigned char [newSize];
            int i = 16;
            while (i<dataSize){
                for (int j=0;j<16;j++)
                    tmpbloc[j/4][j%4] = mess[i+j] + 128;
 
                tmpbloc = decryptBloc(tmpbloc);
                addTab(res,tmpbloc,pos);
                pos+=16;
                i += 16;
            }
 
            return res;
        }
 
        /**
         * Chiffre un bloc 16 bytes rangés dans un tableau [4][4]
         */
        array<array<int, 4>, 4> AES_ENC::encryptBloc(array<array<int, 4>, 4> matrix){
 
            matrix = addRoundKey(matrix, getRoundKey(0));
 
            //Ronde AES
            for (int i=1; i<nr;i++){
                matrix = subBytes(matrix);
                matrix = shiftRows(matrix);
                matrix = mixColumns(matrix);
                matrix = addRoundKey(matrix, getRoundKey(i));
            }
            matrix = subBytes(matrix);
            matrix = shiftRows(matrix);
            matrix = addRoundKey(matrix, getRoundKey(nr));
            return matrix;
        }
 
        /**
         * Dechiffre un bloc
         */
        array<array<int, 4>, 4> AES_ENC::decryptBloc(array<array<int, 4>, 4> matrix){
            matrix = addRoundKey(matrix, getRoundKey(nr));
 
            //Ronde AES
            for (int i=nr-1; i>0; i--){
                matrix = invShiftRows(matrix);
                matrix = invSubBytes(matrix);
                matrix = addRoundKey(matrix, getRoundKey(i));
                matrix = invMixColumns(matrix);
            }
            matrix = invShiftRows(matrix);
            matrix = invSubBytes(matrix);
            matrix = addRoundKey(matrix, getRoundKey(0));
            return matrix;
        }
 
        /****************************************************************************************************************
        * Construction des clés de rondes
        ****************************************************************************************************************/
 
        /**
         * Applique un XOR sur chaque element de in par key
         * @param in    tableau 4x4 a traiter
         * @param key    cle de cryptage
         * @return        retourne un tableau 4x4
         */
        array<array<int, 4>, 4> AES_ENC::addRoundKey(array<array<int, 4>, 4> in, array<int, 16> key)
        {
            array<array<int, 4>, 4> out;
            int k =0, l=0;
 
            for (int i=0;i< (4*nk);i++)
            {
                k = i/4 % 4;
                l = i % 4;
                out[k][l] = in[k][l] ^ key[i];
            }
 
            return out;
        }
 
        /**
         * Procede à la generation des clés de rondes
         */
        array<int, 176> AES_ENC::keyExpansion(array<int, 16> k)
        {
            AESWord128 tmp;
            array<AESWord128, 176> w;
 
            int t = 0, i = 0;
            array<int, 176> result;
 
            for (i=0; i< nk; i++)
            {
                w[i] = AESWord128(k[t],k[t+1],k[t+2],k[t+3]);
                t += 4;
            }
 
            for(i=nk; i < (nb * (nr +1)); i++ )
            {
                tmp = AESWord128(w[i-1]);
 
                if ((i % nk) == 0){
                    tmp = AESWord128((subWord(tmp.rotWord()))^(rCon[i / nk]));
                }else if((nk > 6) && (i % nk ==4)){
                    tmp = AESWord128(subWord(tmp));
                }
 
                w[i] = AESWord128(w[i - nk]^(tmp));
            }
 
            t = 0;
            i = 0;
 
            while ( i < (nk * (nr+1)))
            {
                result[t] = w[i].byte1;
                result[t+1] = w[i].byte2;
                result[t+2] = w[i].byte3;
                result[t+3] = w[i].byte4;
                i++;
                t+=4;
            }
            return result;
        }
 
        /**
         * Retourne la clé de ronde de la ronde round
         * @round
         */
        array<int, 16> AES_ENC::getRoundKey(int round)
        {
            array<int, 16> out;
            int t= 0;
            for (int i=(round*4*nk); i < (round*4*nk)+(4*nk); i++){
                out[t] = expandKey[i];
                t++;
            }
 
            return out;
 
        }
        /**
         * Application de la sBox a un mot AES de clé de ronde
         * @param w
         * @return
         */
        AES_ENC::AESWord128 AES_ENC::subWord(AESWord128 w)
        {
            AESWord128 out (sBox[w.byte1],sBox[w.byte2],sBox[w.byte3],sBox[w.byte4]);
            return out;
        }
 
        /**
         * Operation SubBytes, transforme les octet de in par la S-Box
         * @param in    tableau 4x4 representant les donnees sur lesquelles ont dois effectuer une substitution
         * @return        retourne un tableau 4x4 ou les octets sont substitues
         */
        array<array<int, 4>, 4> AES_ENC::subBytes(array<array<int, 4>, 4> in)
        {
            array<array<int, 4>, 4> out;
 
            for (int i = 0; i<4;i++){
                for (int j=0;j<4;j++){
                    out[i][j]= sBox[in[i][j]];
                }
            }
 
            return out;
        }
 
        /**
         * Applique un decalage a gauche circulaire
         * @param in    matrice4x4 de donnees a applique le decalage circulaire e gauche
         * @return        retourne un tableau 4x4 sur lequel un decalage cirulaire e etait effectue
         */
        array<array<int, 4>, 4> AES_ENC::shiftRows(array<array<int, 4>, 4> in)
        {
            array<array<int, 4>, 4> out;
 
            for (int i=0;i<4;i++){
                out[0][i]=in[0][i];
            }
 
            out[1][0] = in[1][1];
            out[1][1] = in[1][2];
            out[1][2] = in[1][3];
            out[1][3] = in[1][0];
 
            out[2][0] = in[2][2];
            out[2][1] = in[2][3];
            out[2][2] = in[2][0];
            out[2][3] = in[2][1];
 
            out[3][0] = in[3][3];
            out[3][1] = in[3][0];
            out[3][2] = in[3][1];
            out[3][3] = in[3][2];
 
            return out;
 
        }
 
        /**
         * Traite les colonnes commes des polynomes de degres n et applique un produit matriciel sur chaque element
         * @param in
         * @return
         */
        array<array<int, 4>, 4> AES_ENC::mixColumns(array<array<int, 4>, 4> in)
        {
            array<array<int, 4>, 4> out;
            array<int, 4> sp;
 
               for (int c = 0; c < 4; c++) {
                  sp[0] = (gf2Mult(0x02, in[0][c])) ^ (gf2Mult(0x03, in[1][c])) ^ in[2][c] ^ in[3][c];
                  sp[1] = in[0][c] ^ (gf2Mult(0x02, in[1][c])) ^ (gf2Mult(0x03, in[2][c])) ^ in[3][c];
                  sp[2] = in[0][c] ^ in[1][c] ^ (gf2Mult(0x02, in[2][c])) ^ (gf2Mult(0x03, in[3][c]));
                  sp[3] = (gf2Mult(0x03, in[0][c])) ^ in[1][c] ^ in[2][c] ^ (gf2Mult(0x02, in[3][c]));
                  for (int i = 0; i < 4; i++) out[i][c] = sp[i];
               }
 
            return out;
        }
 
    /****************************************************************************************************************
     * Procédure de déchiffrement
     ****************************************************************************************************************/
 
        /**
         * Operation inverse de SuBytes
         * @param in    donnees e deSubytes
         * @return        retourne un tableau 4x4 ou les donnees sont plus substitues par la S-Box
         */
        array<array<int, 4>, 4> AES_ENC::invSubBytes(array<array<int, 4>, 4> in)
        {
            array<array<int, 4>, 4> out;
 
            for (int i = 0; i<4;i++){
                for (int j=0;j<4;j++){
                    out[i][j]= invSBox[in[i][j]];
                }
            }
            return out;
        }
 
        /**
         * Inverse de ShiftRow, donc decalage a droite
         * @param in
         * @return
         */
        array<array<int, 4>, 4> AES_ENC::invShiftRows(array<array<int, 4>, 4> in){
            array<array<int, 4>, 4> out;
 
            for (int i=0;i<4;i++){
                out[0][i]=in[0][i];
            }
 
            out[1][1] = in[1][0];
            out[1][2] = in[1][1];
            out[1][3] = in[1][2];
            out[1][0] = in[1][3];
 
            out[2][2] = in[2][0];
            out[2][3] = in[2][1];
            out[2][0] = in[2][2];
            out[2][1] = in[2][3];
 
            out[3][3] = in[3][0];
            out[3][0] = in[3][1];
            out[3][1] = in[3][2];
            out[3][2] = in[3][3];
 
            return out;
        }
 
        /**
         * Inverse de MixColumns
         * @param in
         * @return
         */
        array<array<int, 4>, 4> AES_ENC::invMixColumns(array<array<int, 4>, 4> in)
        {
           array<array<int, 4>, 4> out;
           array<int, 4> sp;
 
           for (int c = 0; c < 4; c++) {
              sp[0] = (gf2Mult(0x0e, in[0][c])) ^ (gf2Mult(0x0b, in[1][c])) ^
                      (gf2Mult(0x0d, in[2][c])) ^ (gf2Mult(0x09, in[3][c]));
              sp[1] = (gf2Mult(0x09, in[0][c])) ^ (gf2Mult(0x0e, in[1][c])) ^
                      (gf2Mult(0x0b, in[2][c])) ^ (gf2Mult(0x0d, in[3][c]));
              sp[2] = (gf2Mult(0x0d, in[0][c])) ^ (gf2Mult(0x09, in[1][c])) ^
                      (gf2Mult(0x0e, in[2][c])) ^ (gf2Mult(0x0b, in[3][c]));
              sp[3] = (gf2Mult(0x0b, in[0][c])) ^ (gf2Mult(0x0d, in[1][c])) ^
                      (gf2Mult(0x09, in[2][c])) ^ (gf2Mult(0x0e, in[3][c]));
              for (int i = 0; i < 4; i++) out[i][c] = sp[i];
           }
 
 
           return out;
        }
        int AES_ENC::xtime(int x){
            x = x<<1;
            if (x >> 8 == 1)
                x = (x ^ 0x1B) & 0xff;
            return x;
        }
        int AES_ENC::x_time(int x, int y){
            if (y !=0){
                for (int i=0; i<y;i++)
                    x =  xtime(x);
            }else{
                x =0;
            }
            return x;
        }
        int AES_ENC::gf2Mult(int x, int y) {
            int tmpres = 0;
            int res = 0;
            if (y >> 7 == 1) {
                tmpres = x_time(x, 7);
                res = tmpres;
            }
            for(unsigned int i=1;i<7;i++){            //On test tous les bits du 6eme au 2eme
                if ((y<<24+i)>>31 == 1){
                    tmpres = x_time(x,7-i);
                    res = res^tmpres;
                }
            }
            if ((y<<31)>>31 == 1)    //Si le premier bit est a 1
                res = res^x;        //On Xor le resultat avec x
            return res;
        }
        void AES_ENC::addTab(unsigned char in[], std::array<std::array<int, 4>, 4> add, int pos){
            int t=0;
            for (int i=pos; i<pos+16;i++){
                if (i < 4)
                    in[i] = (unsigned char)(add[t/4][t%4]-128);
                t++;
            }
        }
        array<unsigned char, 4> AES_ENC::intToBytes(int i){
            array<unsigned char, 4> res;
            res[0] = (unsigned char)((i) >> 24);
            res[1] = (unsigned char)((i) >> 16);
            res[2] = (unsigned char)((i) >> 8);
            res[3] = (unsigned char)((i));
            return res;
        }
        /**
        * Convertit 4 bytes en l'entier correspondant
        */
        int AES_ENC::bytesToInt(array<unsigned char, 4> b){
            return  (b[0] & 0xFF) << 24 |
                    (b[1] & 0xFF) << 16 |
                    (b[2] & 0xFF) << 8 |
                    (b[3] & 0xFF);
        }
    }
}

Mais ça ne fonctionne pas car je ne retrouve pas le texte en clair que je chiffre :

Code cpp : Sélectionner tout - Visualiser dans une fenêtre à part
1
2
3
4
5
6
7
8
9
10
 
int main() {
    std::string phrase = "Hello world!";
    network::AES_ENC aes;
    unsigned char* crypted = aes.encrypt(reinterpret_cast<const unsigned char*>(phrase.c_str()), phrase.length(), newSize);
    unsigned char* decrypted = aes.decrypt(crypted, newSize, newSize);
    std::string s (reinterpret_cast<const char*> (decrypted), newSize);
    std::cout<<"decrypted aes : "<<s<<std::endl;
    return 0;
}

Et je ne comprend absolument pas pourquoi ça ne fonctionne pas!
Merci d'avance pour votre aide.