1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
| /*----------------------------------------------------------------------------*/
/*============================================================================*/
/* INCLUDE */
/*============================================================================*/
/*----------------------------------------------------------------------------*/
#include <math.h>
#include <stdlib.h>
#include "projectile.h"
#include "space.h"
#include "simu.h"
#include "cte.h"
/*----------------------------------------------------------------------------*/
/*============================================================================*/
/* PUBLIC METHODES IMPLEMENATION */
/*============================================================================*/
/*----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------*/
/* i_init_projectile */
/*----------------------------------------------------------------------------*/
int i_init_projectile(projectile_t * pst_p, void * pst_sp, uint64_t u64_id)
{
if(pst_p == NULL || pst_sp == NULL){return -1;}
pst_p->pst_sp = (space_t*)pst_sp;
pst_p->u64_id = u64_id;
pst_p->computed_vect = pst_p->computed_data;
pst_p->current_vect = pst_p->current_data;
pst_p->prev_vect = pst_p->prev_data;
pst_p->pprev_vect = pst_p->pprev_data;
return EXIT_SUCCESS;
}/* fin i_init_projectile*/
/*----------------------------------------------------------------------------*/
/* projectile_compute_next_state */
/*----------------------------------------------------------------------------*/
void projectile_compute_next_state(projectile_t * pst_p, double dt_sur_24)
{
register double current_x;
register double current_y;
double dist_s_p2;
double dist_s_p;
double cos_teta_S;
double sin_teta_S;
double px_relatif_earth;
double py_relatif_earth;
double dist_e_p2;
double dist_e_p;
double cos_teta_E;
double sin_teta_E;
double px_relatif_moon;
double py_relatif_moon;
double dist_m_p2;
double dist_m_p;
double cos_teta_M;
double sin_teta_M;
double px_relatif_mars;
double py_relatif_mars;
double dist_mars_p2 ;
double dist_mars_p;
double cos_teta_Mars;
double sin_teta_Mars;
double px_proj;
double py_proj;
double dist_proj_2 ;
double dist_proj_p;
double cos_teta_proj;
double sin_teta_proj;
double computed_ax;
double computed_ay;
double pp_vy;
double p_vy;
double cur_vy;
double pp_vx;
double p_vx;
double cur_vx;
double pp_ay;
double p_ay ;
double cur_ay;
double pp_ax;
double p_ax;
double cur_ax;
double computed_vx;
double computed_vy;
space_t * sp = (space_t *)(pst_p->pst_sp);
current_x = projectile_getX(pst_p);
current_y = projectile_getY(pst_p);
/*SOLEIL*/
/*distance projectile soleil au carré en m²*/
dist_s_p2 = current_x *current_x + current_y*current_y;
dist_s_p = sqrt(dist_s_p2);
cos_teta_S = current_x /dist_s_p;
sin_teta_S = current_y /dist_s_p;
/*TERRE*/
/*distance projectile terre au carré en m²*/
px_relatif_earth = current_x - sp->st_earth.current_vect[S_X];
py_relatif_earth = current_y - sp->st_earth.current_vect[S_Y];
dist_e_p2 = px_relatif_earth * px_relatif_earth +
py_relatif_earth * py_relatif_earth;
dist_e_p = sqrt(dist_e_p2);
cos_teta_E = px_relatif_earth /dist_e_p;
sin_teta_E = py_relatif_earth /dist_e_p;
/*MOON*/
/*distance projectile terre au carré en m²*/
px_relatif_moon = current_x - sp->st_moon.current_vect[S_X];
py_relatif_moon = current_y - sp->st_moon.current_vect[S_Y];
dist_m_p2 = px_relatif_moon*px_relatif_moon +
py_relatif_moon*py_relatif_moon ;
dist_m_p = sqrt(dist_m_p2);
cos_teta_M = px_relatif_moon / dist_m_p;
sin_teta_M = py_relatif_moon / dist_m_p;
/*MARS*/
/*distance projectile terre au carré en m²*/
px_relatif_mars = current_x - sp->st_mars.current_vect[S_X];
py_relatif_mars = current_y - sp->st_mars.current_vect[S_Y];
dist_mars_p2 = px_relatif_mars * px_relatif_mars +
py_relatif_mars * py_relatif_mars;
dist_mars_p = sqrt(dist_mars_p2);
cos_teta_Mars = px_relatif_mars /dist_mars_p;
sin_teta_Mars = py_relatif_mars /dist_mars_p;
/*acceleration du projectil en fonction des satellite x en m/s/s*/
computed_ax = -G*MS/dist_s_p2*cos_teta_S /*attration du soleil x*/
-G*ME/dist_e_p2*cos_teta_E /*attration de la terre x*/
-G*MM/dist_m_p2*cos_teta_M /*attraction de la lune x*/
-G*MMARS/dist_mars_p2*cos_teta_Mars; /*attration de Mars x*/
computed_ay = -G*MS/dist_s_p2*sin_teta_S /*attration du soleil y*/
-G*ME/dist_e_p2*sin_teta_E /*attration de la terre y*/
-G*MM/dist_m_p2*sin_teta_M/*attraction de la lune y*/
-G*MMARS/dist_mars_p2*sin_teta_Mars; /*attration de Mars y*/
/* interractions entre les projectiles*/
uint64_t u64_i;
uint64_t u64_nb_prjectile = sp->u64_nb_projectile;
for(u64_i = 0 ; u64_i < u64_nb_prjectile; u64_i++)
{/* parcours des projectiles*/
if(u64_i != projectile_getID(pst_p))
{/* projectile !=*/
const projectile_t * pst_p_next = pst_space_get_projectile(sp,u64_i);
px_proj = current_x - projectile_getX(pst_p_next);
py_proj = current_y - projectile_getY(pst_p_next);
dist_proj_2 = px_proj*px_proj + py_proj*py_proj;
dist_proj_p = sqrt(dist_proj_2);
cos_teta_proj = px_proj/dist_proj_p;
sin_teta_proj = py_proj/dist_proj_p;
computed_ax -= G*projectile_getMASSE(pst_p_next)/dist_proj_2*cos_teta_proj;
computed_ay -= G*projectile_getMASSE(pst_p_next)/dist_proj_2*sin_teta_proj;
}
}/* fin parcours des projectiles*/
/*INTEGRATION*/
pp_vy = pst_p->pprev_vect[P_VY];
p_vy = pst_p->prev_vect[P_VY];
cur_vy = pst_p->current_vect[P_VY];
pp_vx = pst_p->pprev_vect[P_VX];
p_vx = pst_p->prev_vect[P_VX];
cur_vx = pst_p->current_vect[P_VX];
pp_ay = pst_p->pprev_vect[P_AY];
p_ay = pst_p->prev_vect[P_AY];
cur_ay = pst_p->current_vect[P_AY];
pp_ax = pst_p->pprev_vect[P_AX];
p_ax = pst_p->prev_vect[P_AX];
cur_ax = pst_p->current_vect[P_AX];
/*Vitesse du projectile suivant x en m/s*/
computed_vx = pst_p->current_vect[P_VX] +
(9.0*computed_ax + 19.0*cur_ax - 5.0*p_ax + pp_ax)*dt_sur_24;
/*Vitesse du projectile suivant y en m/s*/
computed_vy = pst_p->current_vect[P_VY] +
(9.0*computed_ay + 19.0*cur_ay - 5.0*p_ay + pp_ay)*dt_sur_24;
/*Position du projectile suivant x en m*/
pst_p->computed_vect[P_X] = current_x +
(9.0*computed_vx + 19.0*cur_vx - 5.0*p_vx + pp_vx)*dt_sur_24;
/*Position du projectile suivant y en m*/
pst_p->computed_vect[P_Y] = current_y +
(9.0*computed_vy + 19.0*cur_vy - 5.0*p_vy + pp_vy)*dt_sur_24;
pst_p->computed_vect[P_VX] = computed_vx;
pst_p->computed_vect[P_VY] = computed_vy;
pst_p->computed_vect[P_AX] = computed_ax;
pst_p->computed_vect[P_AY] = computed_ay;
}
/*----------------------------------------------------------------------------*/
/* projectile_setX */
/*----------------------------------------------------------------------------*/
void projectile_setX(projectile_t * p, double x)
{
p->current_vect[P_X] = x;
p->prev_vect[P_X] = x;
p->pprev_vect[P_X] = x;
projectile_setVX(p,0.0);
}/* fin projectile_setX*/
/*----------------------------------------------------------------------------*/
/* projectile_setY */
/*----------------------------------------------------------------------------*/
void projectile_setY(projectile_t * p, double y)
{
p->current_vect[P_Y] = y;
p->prev_vect[P_Y] = y;
p->pprev_vect[P_Y] = y;
projectile_setVY(p,0.0);
}/* fin projectile_setY */
/*----------------------------------------------------------------------------*/
/* projectile_setVX */
/*----------------------------------------------------------------------------*/
void projectile_setVX(projectile_t * p, double vx)
{
p->current_vect[P_VX] = vx;
p->prev_vect[P_VX] = vx;
p->pprev_vect[P_VX] = vx;
}/* fin projectile_setVX*/
/*----------------------------------------------------------------------------*/
/* i_set_projectile_state */
/*----------------------------------------------------------------------------*/
void projectile_setVY(projectile_t * p, double vy)
{
p->current_vect[P_VY] = vy;
p->prev_vect[P_VY] = vy;
p->pprev_vect[P_VY] = vy;
}/* projectile_setVY*/
/*----------------------------------------------------------------------------*/
/* void projectile_setMASSE(projectile_t * p, double masse); */
/*----------------------------------------------------------------------------*/
void projectile_setMASSE(projectile_t * p, double masse)
{
p->current_vect[P_MASSE] = masse;
p->prev_vect[P_MASSE] = masse;
p->pprev_vect[P_MASSE] = masse;
}/* projectile_setMASSE*/
/*----------------------------------------------------------------------------*/
/* set_projectile_state */
/*----------------------------------------------------------------------------*/
void set_projectile_state(const projectile_t * pst_p,
st_projectile_state_t * pst_st)
{
pst_st->u64_id = projectile_getID(pst_p);
pst_st->d_X = projectile_getX(pst_p);
pst_st->d_Y = projectile_getY(pst_p);
pst_st->d_vX = projectile_getvX(pst_p);
pst_st->d_vY = projectile_getvY(pst_p);
}/* fin i_set_projectile_state*/
/*----------------------------------------------------------------------------*/
/* projectile_set */
/*----------------------------------------------------------------------------*/
void projectile_set(projectile_t * pst_p,
double x,
double vx,
double y,
double vy)
{
pthread_log_t * pst_log = pst_simu_get_log(pst_space_get_sim(
pst_projectile_get_space(pst_p)));
projectile_setX(pst_p,x);
projectile_setVX(pst_p,vx);
projectile_setY(pst_p,y);
projectile_setVY(pst_p,vy);
i_log(pst_log,"Projectile %lu set x:%E m, vx:%E m/s, y:%E m, vy:%E m/s",
projectile_getID(pst_p),
projectile_getX(pst_p),projectile_getvX(pst_p),
projectile_getY(pst_p),projectile_getvY(pst_p));
}/*fin projectile_set*/
/*----------------------------------------------------------------------------*/
/* projectile_thread_computation */
/*----------------------------------------------------------------------------*/
void * projectile_thread_computation(void *pst_args)
{
projectile_t * pst_p = (projectile_t *)pst_args;
simu_t * pst_sim = pst_space_get_sim(pst_projectile_get_space(pst_p));
double dt_sur_24 = pst_sim->dt_sur_24;
uint64_t u64_nb_iter = pst_sim->u64_nb_iter;
pthread_t th_this = pst_sim->pst_th_computation[projectile_getID(pst_p)+1];
uint64_t u64_i;
//bool test;
for(u64_i = 0; u64_i < u64_nb_iter ; u64_i++)
{
//met la priorité au max
pthread_setschedprio(th_this,sched_get_priority_max(SCHED_FIFO));
projectile_compute_next_state(pst_p,dt_sur_24);
//met la priorité au min
pthread_setschedprio(th_this,sched_get_priority_min(SCHED_FIFO));
simu_threads_wait_synchro(pst_sim);
//met la priorité au max
pthread_setschedprio(th_this,sched_get_priority_max(SCHED_FIFO));
projectile_update_vect(pst_p);
//met la priorité au min
pthread_setschedprio(th_this,sched_get_priority_min(SCHED_FIFO));
simu_threads_wait_synchro(pst_sim);
}/* fin des iterations*/
pthread_exit(NULL);
}/* fin projectile_thread_computation*/ |
Partager