1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
# import statements
# import abaqus
from odbAccess import*
from abaqusConstants import*
from odbMaterial import*
from odbSection import*
from math import*
# open text files in which we'll put and display the results
f10=open('GAG.txt','w')
f11=open('LMC.txt','w')
f12=open('CC.txt','w')
f13=open('OO.txt','w')
f14=open('SS.txt','w')
# open DATABASE
odb = openOdb(path='hcf.odb')
lcf = openOdb(path='lcf.odb')
# determine the number and names of instances in the odb
myAssembly = odb.rootAssembly
for instanceName in odb.rootAssembly.instances.keys():
print 'Instance Name : ',instanceName
# determine the materials of each instance in the odb
allMaterials = odb.materials
for materialName in allMaterials.keys():
print 'Material Name : ',materialName
# determine the number and names of steps in the odb
for stepName in odb.steps.keys():
print stepName
# determine the node sets and the element sets in the odb
print 'Node sets = ',odb.rootAssembly.instances['V20110406-1-1'].nodeSets.keys()
print 'element sets = ',odb.rootAssembly.instances['V20110406-1-1'].elementSets.keys()
# define the material parameters
Rm = 470
Re = 390
sig_D_mean = 120.317804382247
# define the model chosen
modele = ['Goodman', 'Gerber', 'Soderberg']
print modele
choix = input ('Entrer le nom du modele choisi parmi la liste precedante')
def sig_Goodman(Rm, dyn, stat, alpha):
return (Rm*dyn)/(Rm-(stat/alpha))
def sig_Gerber(Re, dyn, stat):
return ((Re**2)*dyn)/(Re**2-(stat)**2)
def sig_Soderberg(Re, dyn, stat, alpha):
return (Re*dyn)/(Re-(stat/alpha))
# define the Damage Tolerance curve and the Flaw Tolerance curve
Ratio = [-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1]
DTA1 = [66.8,64.4,61.3,57.4,52.7,47.3,39.0,32.9,27.2,16.8,0]
DTA2 = [56.3,54.3,51.7,48.4,44.4,39.8,32.9,27.8,22.9,14.2,0]
FTA = [194.2,187.4,178.4,167.0,153.4,137.5,113.6,95.8,79.0,48.9,0]
# define the safe curve
x = [1,1666,16666,100000,200000,300000,400000,500000,700000,1000000,2000000,3000000,4000000,7000000,10000000,20000000,30000000,40000000,50000000,80000000,100000000,200000000,300000000,400000000,700000000,1000000000,10000000000]
y = [333.487953502046,333.487953502046,252.023589004762,144.841143106185,134.316479532823,128.773084241854,125.091228664023,122.370855728624,118.481010326472,114.620454409826,107.826945429572,104.248768756484,101.872187428479,97.605392834564,95.113463177554,90.728357283851,88.418699099329,86.884652288088,85.751207659768,83.515504894025,82.521999403873,79.691480778685,78.200631830545,77.210428132759,75.432666212810,74.394402580963,69.148163438073]
# define the list of target cycle of HCF and LCF
T_cycle = [28555200,28555200,19036800,590140800,28555200,38073600,76147200,95184000,47592000,20000,100,40000,10000,40000]
# calculate the mean, alternating and equivalent stresses
# and the service life and the damage
def calcul(k,f):
maxStress=0
for idx, value in enumerate(Stress) :
S11 = value.data[0]
S22 = value.data[1]
S12 = value.data[3]
e = Stress1[idx]
S_11 = e.data[0]
S_22 = e.data[1]
S_12 = e.data[3]
# calculate the alternating stress tensor and its eigenvalues
D11 = (S11-S_11)/2
D22 = (S22-S_22)/2
D12 = (S12-S_12)/2
Dyn1 = ((D11+D22)-sqrt(D11**2+D22**2+4*D12**2-2*D11*D22))/2
Dyn2 = ((D11+D22)+sqrt(D11**2+D22**2+4*D12**2-2*D11*D22))/2
# calculate the mean stress tensor and its eigenvalues
St11 = (S11+S_11)/2
St22 = (S22+S_22)/2
St12 = (S12+S_12)/2
Stat1 = ((St11+St22)+sqrt(St11**2+St22**2+4*St12**2-2*St11*St22))/2
Stat2 = ((St11+St22)-sqrt(St11**2+St22**2+4*St12**2-2*St11*St22))/2
# calculate the alternating stress and the mean stress
if abs(Dyn1)>=abs(Dyn2):
sig_dyn = abs(Dyn1)
else:
sig_dyn = abs(Dyn2)
if abs(Stat1)>=abs(Stat2):
signe = Stat1/abs(Stat1)
sig_stat = signe*sqrt(Stat1**2-Stat1*Stat2+Stat2**2)
else:
signe = Stat2/abs(Stat2)
sig_stat = signe*sqrt(Stat2**2-Stat1*Stat2+Stat1**2)
# calculate the maximum and minimum stress and the ratio
Max = sig_dyn+sig_stat
Min = sig_stat-sig_dyn
R = Min/Max
# calculate the equivalent stress
alpha_G = abs(sig_D_mean/((sig_dyn/sig_stat)+(sig_D_mean/Rm)))*((1+(sig_dyn/sig_stat)**2)/(sig_dyn**2+sig_stat**2))**0.5
alpha_S = abs(sig_D_mean/((sig_dyn/sig_stat)+(sig_D_mean/Re)))*((1+(sig_dyn/sig_stat)**2)/(sig_dyn**2+sig_stat**2))**0.5
if choix == 'Goodman':
sig_eq = sig_Goodman(Rm, sig_dyn, sig_stat, alpha_G)
elif choix == 'Gerber':
sig_eq = sig_Gerber(Re, sig_dyn, sig_stat)
elif choix == 'Soderberg':
sig_eq = sig_Soderberg(Re, sig_dyn, sig_stat, alpha_S)
else:
print ('Votre choix n appartient pas a la liste precedante')
if sig_eq > maxStress:
maxStress = sig_eq
# determination of the service life
if sig_eq > y[0]:
N_cycle = 0
elif sig_eq <= y[-1]:
N_cycle = 1.0E+10
else:
i=0
len_y=len(y)
while (i < len_y - 1):
if (sig_eq < y[i]) and (sig_eq > y[i+1]):
N_cycle = x[i+1]-((y[i+1]-sig_eq)*(x[i+1]-x[i])/(y[i+1]-y[i]))
break
i=i+1
# calculate the damage
Damage = T_cycle[k-1]/N_cycle
# projection of the alternating stresses on the DTA and FTA curves
if (R<-1) or (R>1):
propa_DTA1=-1.0E-01
propa_DTA2=-1.0E-01
propa_FTA=-1.0E-01
else:
j =0
len_DTA1 = len(DTA1)
while (j < len_DTA1 - 1):
if (R > Ratio[j]) and (R < Ratio[j+1]):
sig_DTA1 = DTA1[j+1]-((Ratio[j+1]-R)*(DTA1[j+1]-DTA1[j])/(Ratio[j+1]-Ratio[j]))
propa_DTA1 = sig_dyn-sig_DTA1
sig_DTA2 = DTA2[j+1]-((Ratio[j+1]-R)*(DTA2[j+1]-DTA2[j])/(Ratio[j+1]-Ratio[j]))
propa_DTA2 = sig_dyn-sig_DTA2
sig_FTA = FTA[j+1]-((Ratio[j+1]-R)*(FTA[j+1]-FTA[j])/(Ratio[j+1]-Ratio[j]))
propa_FTA = sig_dyn-sig_FTA
break
j=j+1
f.write('Instance:\t %s\tElement:\t %6d\tSig_stat:\t %E\tSig_dyn:\t %E\tMax:\t %E\tMin:\t %E\tR:\t %E\tSig_eq:\t %E\tN_cycle:\t %E\tMaxStress:\t %E\tDamage:\t %E\tpropa_DTA1:\t %E\tpropa_DTA2:\t %E\tpropa_FTA:\t %E\n'%(value.instance.name,value.elementLabel,sig_stat,sig_dyn,Max,Min,R,sig_eq,N_cycle,maxStress,Damage,propa_DTA1,propa_DTA2,propa_FTA))
#------------------------------------------------Analyse_frequentielle: HCF-------------------------------------------------------
nb_loadcase = 9
i = 1
while i <= nb_loadcase:
#print "HCF%i" %i
stressField = odb.steps['Load'].frames[i+1].fieldOutputs['S']
stressField1 = odb.steps['Load'].frames[i+2].fieldOutputs['S']
topCenter = odb.rootAssembly.instances['V20110406-1-1'].elementSets['SKIN']
Stress = stressField.getSubset(region=topCenter, position=CENTROID).values
Stress1 = stressField1.getSubset(region=topCenter, position=CENTROID).values
f=open('HCF%i'%i + '.txt','w')
calcul(i,f)
i=i+1
#------------------------------------------------Analyse_temporelle: LCF-------------------------------------------------------
#-----------------------------------------------------------GAG-----------------------------------------------------------------
# determine the stress value at the frame number 2 and 11 of the second step
# in the "SKIN" element set (GAG)
stressField = lcf.steps['Load'].frames[2].fieldOutputs['S']
stressField1 = lcf.steps['Load'].frames[11].fieldOutputs['S']
topCenter = lcf.rootAssembly.instances['V20110406-1-1'].elementSets['SKIN']
Stress = stressField.getSubset(region=topCenter, position=CENTROID).values
Stress1 = stressField1.getSubset(region=topCenter, position=CENTROID).values
calcul(nb_loadcase+1, f10)
#-----------------------------------------------------------LMC-----------------------------------------------------------------
# determine the stress value at the frame number 2 and 17 of the second step
# in the "SKIN" element set (LMC)
stressField = lcf.steps['Load'].frames[2].fieldOutputs['S']
stressField1 = lcf.steps['Load'].frames[17].fieldOutputs['S']
topCenter = lcf.rootAssembly.instances['V20110406-1-1'].elementSets['SKIN']
Stress = stressField.getSubset(region=topCenter, position=CENTROID).values
Stress1 = stressField1.getSubset(region=topCenter, position=CENTROID).values
calcul(nb_loadcase+2, f11)
#-----------------------------------------------------------CC-----------------------------------------------------------------
# determine the stress value at the third and forth frame of the second step
# in the "SKIN" element set (CC)
stressField = lcf.steps['Load'].frames[3].fieldOutputs['S']
stressField1 = lcf.steps['Load'].frames[4].fieldOutputs['S']
topCenter = lcf.rootAssembly.instances['V20110406-1-1'].elementSets['SKIN']
Stress = stressField.getSubset(region=topCenter, position=CENTROID).values
Stress1 = stressField1.getSubset(region=topCenter, position=CENTROID).values
calcul(nb_loadcase+3, f12)
#-----------------------------------------------------------OO-----------------------------------------------------------------
# determine the stress value at the frame nuber 2 and 13 of the second step
# in the "SKIN" element set (OO)
stressField = lcf.steps['Load'].frames[2].fieldOutputs['S']
stressField1 = lcf.steps['Load'].frames[13].fieldOutputs['S']
topCenter = lcf.rootAssembly.instances['V20110406-1-1'].elementSets['SKIN']
Stress = stressField.getSubset(region=topCenter, position=CENTROID).values
Stress1 = stressField1.getSubset(region=topCenter, position=CENTROID).values
calcul(nb_loadcase+4, f13)
#-----------------------------------------------------------SS-----------------------------------------------------------------
# determine the stress value at the frame number 5 and 7 of the second step
# in the "SKIN" element set (SS)
stressField = lcf.steps['Load'].frames[5].fieldOutputs['S']
stressField1 = lcf.steps['Load'].frames[7].fieldOutputs['S']
topCenter = lcf.rootAssembly.instances['V20110406-1-1'].elementSets['SKIN']
Stress = stressField.getSubset(region=topCenter, position=CENTROID).values
Stress1 = stressField1.getSubset(region=topCenter, position=CENTROID).values
calcul(nb_loadcase+5, f14) |
Partager