Bonjour,
Ne connaissant pas grand choses à la programation,
je voudrais savoir dans quel language ce petit programme a été ecrit.
(c'est pour des calculs en hydraulique)
Merci d'avance.

J'en ai mis qu'une petite partie en esperant que vous arriverez à l'identifier:

Code : Sélectionner tout - Visualiser dans une fenêtre à part
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
begin ''HAMMER: Water hammer analysis
         INTEGER Number!Of!Nodes;

REAL PROCEDURE Regula!Falsi(REAL X0,X1,Accuracy; REAL PROCEDURE F);
        begin "Regula Falsi According to Firouztale, Spencer & Wright"
          Real X2;
                While (abs(f(x2)-f(x1)) geq accuracy) do
                        x0:=((x2:=x1)-(x1:=x0))*f(x1)/(f(x1)-f(x2))+x1;
           Return(x0);
        End"Regula Falsi According to Firouztale, Spencer & Wright";
REAL PROCEDURE Redlich!Kwong(REAL Pressure!Reduced, Temperature!Reduced,
                                  Accuracy);
  begin "Redlich!Kwong"
        REAL h,k,z;
            COMMENT : Z is Compressibility Factor, Z=PV/R/T, ie correction
                      factor leading to Redlich & Kwong Equation of State.
                      Smith & Van Ness, Introduction to Chemical
                      Engineering Thermodynamics;
            z:=1;
            While (abs(z-k) > Accuracy) do
                z:=1/(1-(h:=.0867*Pressure!Reduced/Temperature!Reduced
                           /(k:=z)))-4.93*h*Temperature!Reduced^-1.5/(1+h);
            Return(z);
  END "Redlich!Kwong";
Real Procedure Bulk!Modulus (REAL Pressure,     Critical!Pressure,
                                  Temperature,  Critical!Temperature,
                                  Small!Number, R!Ideal!Constant);
  begin "Bulk Modulus from Thermodynamics"
    REAL Z, dZ!dP;
       COMMENT : k=rho(0)*dP/d.rho, P=Z*rho*r*T,rho dP/dZ=-Z(dZ/dP)=K;
                Z:=Redlich!Kwong(Pressure/Critical!Pressure,
                               Temperature/Critical!Temperature,
                       Small!Number);
        dZ!dP:=(Redlich!Kwong(Pressure/Critical!Pressure
                                  *(1+Small!Number),
                      Temperature/Critical!Temperature,
                      Small/Number)
               -Redlich!Kwong(Pressure/Critical!Pressure
                                  *(1-Small!Number),
                      Temperature/Critical!Temperature,
                      Small/Number)
              )/2/Small!Number*Critical!Pressure;
        RETURN(-Z/dZ!dP);
  END   "Bulk Modulus from Thermodynamics";

Real Procedure Speed!Of!Wave(REAL Pressure, Critical!Pressure,
                                  Temperature, Critical!Temperature,
                  Small!Number, R!Ideal!Constant,
                  Pipe!Diameter,Pipe!Thickness,Young!Modulus,
                  Pipe!Poisson!Ratio;
                  BOOLEAN Free!Pipe, Anchored!Pipe,
                          Expanding!Joints);
  begin "Speed of wave from thermodynamic and elastic pipe theories"
       REAL Density,K,Poisson!Effect;
         Density:=Pressure/R!Ideal!Constant/Temperature/
           Redlich!Kwong(Pressure/Critical!Pressure,
                         Temperature/Critical!Temperature,
                 Small!Number);
         K:=Bulk!Modulus(       Pressure,    Critical!Pressure,
                            Temperature, Critical!Temperature,
                Small!Number,R!Ideal!Constant);
    Poisson!Effect:= if Free!Pipe then (1.25-Pipe!Poisson!Ratio)
                     else if Anchored!Pipe then (1-Pipe!Poisson!Ratio^2)
             else if Expanding!Joints then (1);
       RETURN((Density*(1/K+Pipe!Diameter/Pipe!Thickness/Young!Modulus
                              *Poisson!Effect))^-.5);
  END   "Speed of wave from thermodynamic and elastic pipe theories";