IdentifiantMot de passe
Loading...
Mot de passe oublié ?Je m'inscris ! (gratuit)
Navigation

Inscrivez-vous gratuitement
pour pouvoir participer, suivre les réponses en temps réel, voter pour les messages, poser vos propres questions et recevoir la newsletter

Intelligence artificielle Discussion :

Le pape Léon refuse d’autoriser la création de son avatar IA


Sujet :

Intelligence artificielle

Vue hybride

Message précédent Message précédent   Message suivant Message suivant
  1. #1
    Membre averti
    Homme Profil pro
    Ingénieur développement logiciels
    Inscrit en
    Avril 2020
    Messages
    32
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : France, Moselle (Lorraine)

    Informations professionnelles :
    Activité : Ingénieur développement logiciels
    Secteur : High Tech - Éditeur de logiciels

    Informations forums :
    Inscription : Avril 2020
    Messages : 32
    Par défaut
    Quel est votre avis sur le sujet ?
    Trouvez-vous cette initiative du Vatican justifiée et pertinente ?
    Selon vous, dans quelle mesure le cadre éthique du Vatican sur l'IA est-il pertinent au regard des avancées technologiques actuelles ?
    Selon vous, la capacité de l'IA à prendre des décisions autonomes dans le cadre d'opérations militaires représente-t-elle un plus grand risque que les systèmes traditionnels contrôlés par l'homme ?


    Je préfère un Vatican qui prêche des paroles sage d'éthique et de retenu.
    Il fut un temps ou la religion était assez arriéré pour décapiter ceux qui proposait l'héliocentrisme.
    Aujourd'hui les dirigeants usent de la science pour en faire un dogme religieux (tous tous covid) et les religieux se mette a faire de la "science" en acceptant le progrès tel qu'il est mais tout en remettant l'église au milieux du village (je tente la blague) en se faisant le relais de la sagesse.
    [inserer meme, Simpson swap entre bar et Eglise]

    Il vaut mieux une voix de lucidité sur la situation, dans le sens si le Vatican se voit comme l'entité qui s'oppose au mal, comme un Bergé tentant de protéger un troupeau contre le mal, il vaut mieux qu'elle éduque sont troupeau a reconnaitre le mal, qu'a maintenir dans l'ignorance les conséquences.

    Le feu sa brule, le feu c'est bien pour cuire des aliments et rendre la nourriture plus sur en détruisant bactérie et nuisance, le feu c'est mal quand c'est la maison qui brule, il faut l'éteindre.

    Ils sont un "contre pouvoir" et doivent tenir leur role pour permettre la progression de l'humanité.



    Pour quel raison Trump à t'il appelé sont programme d'ia stargate ? je conseil au Vatican le film "wargame"
    Le centre de contrôle du NORAD à Cheyenne Mountain, servant de décors à ce film est tout autant le décors pour la série stargate.
    Si vous pensez que trump n'a pas un minimum de référence cinématographique, il dit clairement ce qu'il compte faire tout en bernant ce qui ne comprennent pas.

  2. #2
    Invité
    Invité(e)
    Par défaut
    Citation Envoyé par Eye_Py_Ros Voir le message
    Quel est votre avis sur le sujet ?
    Trouvez-vous cette initiative du Vatican justifiée et pertinente ?
    Selon vous, dans quelle mesure le cadre éthique du Vatican sur l'IA est-il pertinent au regard des avancées technologiques actuelles ?
    Selon vous, la capacité de l'IA à prendre des décisions autonomes dans le cadre d'opérations militaires représente-t-elle un plus grand risque que les systèmes traditionnels contrôlés par l'homme ?


    Je préfère un Vatican qui prêche des paroles sage d'éthique et de retenu.
    Il fut un temps ou la religion était assez arriéré pour décapiter ceux qui proposait l'héliocentrisme.
    Aujourd'hui les dirigeants usent de la science pour en faire un dogme religieux (tous tous covid) et les religieux se mette a faire de la "science" en acceptant le progrès tel qu'il est mais tout en remettant l'église au milieux du village (je tente la blague) en se faisant le relais de la sagesse.
    [inserer meme, Simpson swap entre bar et Eglise]

    Il vaut mieux une voix de lucidité sur la situation, dans le sens si le Vatican se voit comme l'entité qui s'oppose au mal, comme un Bergé tentant de protéger un troupeau contre le mal, il vaut mieux qu'elle éduque sont troupeau a reconnaitre le mal, qu'a maintenir dans l'ignorance les conséquences.

    Le feu sa brule, le feu c'est bien pour cuire des aliments et rendre la nourriture plus sur en détruisant bactérie et nuisance, le feu c'est mal quand c'est la maison qui brule, il faut l'éteindre.

    Ils sont un "contre pouvoir" et doivent tenir leur role pour permettre la progression de l'humanité.



    Pour quel raison Trump à t'il appelé sont programme d'ia stargate ? je conseil au Vatican le film "wargame"
    Le centre de contrôle du NORAD à Cheyenne Mountain, servant de décors à ce film est tout autant le décors pour la série stargate.
    Si vous pensez que trump n'a pas un minimum de référence cinématographique, il dit clairement ce qu'il compte faire tout en bernant ce qui ne comprennent pas.
    Le Vatican, en tant qu'État souverain, devrait s'occuper des "ombres du mal" persistantes dans ses églises en premier lieu. Dans l'absolu, les Chrétiens, qu'ils soient catholiques ou Amish, disposent de leur libre arbitre quant à la manière dont ils souhaitent appréhender ce monde et ses progrès technologiques.

    Le bien, le mal, les ténèbres et la lumière sont partout.

  3. #3
    Chroniqueur Actualités
    Avatar de Anthony
    Homme Profil pro
    Rédacteur technique
    Inscrit en
    Novembre 2022
    Messages
    1 959
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : France, Gironde (Aquitaine)

    Informations professionnelles :
    Activité : Rédacteur technique

    Informations forums :
    Inscription : Novembre 2022
    Messages : 1 959
    Par défaut Le pape Léon XIV décrit l'IA comme l’un des problèmes les plus critiques auxquels l’humanité est confrontée
    A peine élu, le nouveau pape Léon XIV s'exprime contre l'IA, comme l’un des problèmes les plus critiques auxquels l’humanité est confrontée : « Un défi pour la dignité humaine, la justice et le travail »

    Le pape Léon XIV a identifié l'intelligence artificielle (IA) comme l'un des problèmes les plus critiques auxquels l'humanité est confrontée aujourd'hui. Lors de sa première rencontre avec l'ensemble des cardinaux depuis son élection au pontificat, Léon a déclaré que l'IA posait des défis à la défense de la « dignité humaine, de la justice et du travail ».

    Cette mise en garde du pape Léon XIV fait suite aux préoccupations exprimées par le Vatican en janvier dernier, lorsqu'il a décrit l'IA comme porteuse de « l'ombre du mal » en raison de son rôle dans la diffusion d'informations erronées. Dans un document d'orientation destiné aux catholiques, l'Église a appelé à une surveillance rigoureuse, soulignant le double potentiel de l'IA, à la fois bénéfique et profondément néfaste.

    Lors de sa rencontre avec les cardinaux, le pape Léon XIV a fait référence à son homonyme, le pape Léon XIII (1878 à 1903), dont on se souvient qu'il a jeté les bases de la pensée sociale catholique moderne.

    En 1891, le pape Léon XIII a écrit une célèbre lettre ouverte à tous les catholiques, intitulée « Rerum Novarum » (« Du changement révolutionnaire »), dans laquelle il réfléchissait à la destruction de la vie des travailleurs par la révolution industrielle.

    Le samedi 10 mai, le pape Léon XIV a souligné la similitude avec l'IA, déclarant aux cardinaux : « À notre époque, l'Église offre à tous le trésor de son enseignement social en réponse à une autre révolution industrielle et aux développements dans le domaine de l'intelligence artificielle qui posent de nouveaux défis pour la défense de la dignité humaine, de la justice et du travail. »


    Vers la fin de son pontificat, le pape François s'est fait de plus en plus entendre sur les menaces que l'IA fait peser sur l'humanité et a appelé à l'élaboration d'un traité international pour la réglementer.

    « Il a été clairement vu dans l'exemple de tant de mes prédécesseurs, et plus récemment par le pape François lui-même, avec son exemple de dévouement total au service et à la simplicité sobre de la vie, son abandon à Dieu tout au long de son ministère et sa confiance sereine au moment de son retour à la maison du Père », a déclaré le pape Léon lors de l'assemblée. « Reprenons ce précieux héritage et poursuivons le chemin, inspirés par la même espérance qui naît de la foi ».

    Le discours du pape Léon XIV sur les dangers de l'IA a été prononcé après que le président américain Donald Trump a posté une image de lui-même en tant que pape, générée par l'IA, sur sa plateforme Truth Social, moins d'une semaine après avoir assisté aux funérailles du pape François, décédé à l'âge de 88 ans le lundi de Pâques.

    La Maison-Blanche l'a ensuite reposté sur son compte officiel X, JD Vance qualifiant la photo de plaisanterie.

    L'ancien premier ministre italien Matteo Renzi a écrit sur X : « C'est une image qui offense les croyants, insulte les institutions et montre que le leader de la droite mondiale aime faire le clown ».

    L'année dernière, une image générée par l'IA du pape François portant une luxueuse veste blanche est devenue virale, montrant à quel point les images réalistes de type deepfake peuvent se répandre rapidement en ligne.

    Le pape François avait souligné les graves préoccupations existentielles soulevées par les éthiciens et les défenseurs des droits de l'homme au sujet de la technologie qui promet de transformer la vie quotidienne d'une manière qui peut tout perturber, des élections démocratiques à l'art.

    Sa plus grande inquiétude concernait l'utilisation de l'IA dans le secteur de l'armement, où les systèmes d'armes à distance ont conduit à une « distanciation de l'immense tragédie de la guerre et à une perception moindre de la dévastation causée par ces systèmes d'armes et du fardeau de la responsabilité de leur utilisation ».

    La récente déclaration du pape Léon XIV s'aligne sur le cadre éthique du Vatican, qui condamne l'utilisation de l'IA dans la guerre. Ce document met en garde contre le fait que la délégation de décisions de vie ou de mort à des machines a contribué à « atténuer la perception » de la dévastation causée par les systèmes d'armes et le « poids de la responsabilité ».

    Source : Déclaration du pape Léon XIV

    Et vous ?

    Quel est votre avis sur le sujet ?
    Trouvez-vous les propos du pape Léon XIV concernant l'IA crédibles ou pertinentes ?

    Voir aussi :

    Le pape met en garde contre les risques liés à l'IA afin que la violence et la discrimination ne prennent pas racine, il avertit contre l'IA produite au détriment des plus fragiles et des exclus

    « Les catholiques du monde entier doivent prier pour que les progrès de la robotique et de l'IA soient toujours au service de l'humanité », demande le Pape François pour ce mois
    Contribuez au club : corrections, suggestions, critiques, ... Contactez le service news et Rédigez des actualités

  4. #4
    Membre éprouvé
    Avatar de calvaire
    Homme Profil pro
    .
    Inscrit en
    Octobre 2019
    Messages
    2 264
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Âge : 43
    Localisation : Singapour

    Informations professionnelles :
    Activité : .
    Secteur : Conseil

    Informations forums :
    Inscription : Octobre 2019
    Messages : 2 264
    Par défaut
    comme l'a très bien Staline:
    Le pape ? Combien de divisions a-t-il ?

    cela répond à la question du pouvoir papale.

  5. #5
    Membre prolifique
    Avatar de Ryu2000
    Homme Profil pro
    Étudiant
    Inscrit en
    Décembre 2008
    Messages
    10 725
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Âge : 37
    Localisation : France, Hérault (Languedoc Roussillon)

    Informations professionnelles :
    Activité : Étudiant

    Informations forums :
    Inscription : Décembre 2008
    Messages : 10 725
    Par défaut
    Citation Envoyé par Anthony Voir le message
    Quel est votre avis sur le sujet ?
    Les entreprises qui développent des armes ne se préoccupent pas de l'opinion du pape.
    C'est sympa de condamner l'utilisation de l'IA dans la guerre, mais ça n'a aucun effet.

    Quelque part le pape ne s'adresse qu'aux catholiques, et même chez les catholiques il y en a beaucoup qui ne l'écoutent pas.

    =====
    Je pense qu'il n'existe pas de rabbin israélien qui sont contre l'utilisation de l'IA par l'armée israélienne.
    Un grand rabbin ne devrait pas justifier les massacres commis à Gaza
    Comparant l’attaque criminelle du 7 octobre, au cours de laquelle le Hamas a tué près de 1 200 personnes, pour la plupart des civils, et enlevé 251 otages, aux crimes de guerre commis par l’armée israélienne depuis onze mois à Gaza, «ce n’est pas du même ordre», a assumé Haïm Korsia, affirmant que «je n’ai absolument pas à rougir de ce qu’Israël fait dans la façon de mener les combats». Plus même, il indique que «tout le monde serait bien content qu’Israël finisse le boulot et qu’on puisse construire une paix enfin au Proche-Orient», comme si la paix pouvait être construite sur un amoncellement de cadavres, comme si la guerre était un travail comme un autre et comme si les Palestiniens – civils comme combattants du Hamas – étaient les incarnations indifférenciées d’une humanité niée et propre à être éliminée.
    Citation Envoyé par Anthony Voir le message
    La récente déclaration du pape Léon XIV s'aligne sur le cadre éthique du Vatican, qui condamne l'utilisation de l'IA dans la guerre. Ce document met en garde contre le fait que la délégation de décisions de vie ou de mort à des machines a contribué à « atténuer la perception » de la dévastation causée par les systèmes d'armes et le « poids de la responsabilité ».
    Il y a des armées qui utilisent des drones depuis des années (comme Tsahal par exemple), des soldats tuent des gens à distance, le poids de la responsabilité doit être plus faible quand on est assis dans un bureau et qu'on tue des gens qui se trouvent très loin.

  6. #6
    Chroniqueur Actualités
    Avatar de Patrick Ruiz
    Homme Profil pro
    Redacteur web
    Inscrit en
    Février 2017
    Messages
    2 336
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : Cameroun

    Informations professionnelles :
    Activité : Redacteur web
    Secteur : Communication - Médias

    Informations forums :
    Inscription : Février 2017
    Messages : 2 336
    Par défaut Le nouveau pape a choisi son nom en fonction des menaces que l'IA fait peser sur la dignité humaine
    Le nouveau pape a choisi son nom en fonction des menaces que l'IA fait peser sur la dignité humaine
    Déjà malmenée sur les champs de bataille du fait de l’utilisation de robots

    Le pape Léon XIV vient d’identifier l'intelligence artificielle comme l'un des problèmes les plus critiques auxquels l'humanité est désormais confrontée. Lors de sa première rencontre avec l'ensemble des cardinaux depuis son élection au pontificat, il a déclaré que l'IA posait des défis à la défense de la « dignité humaine, de la justice et du travail ». Ladite technologie est vue au Vatican comme porteuse de « l’ombre d’un mal » qui se traduit en effet par de plus en plus de dégâts occasionnés par sa mise en œuvre sur les champs de bataille.

    Dans un document d'orientation destiné aux catholiques, l'Église a appelé à une surveillance rigoureuse, soulignant le double potentiel de l'IA, à la fois bénéfique et profondément néfaste.

    Lors de sa rencontre avec les cardinaux, le pape Léon XIV a fait référence à son homonyme, le pape Léon XIII (1878 à 1903), dont on se souvient qu'il a jeté les bases de la pensée sociale catholique moderne.

    En 1891, le pape Léon XIII a écrit une célèbre lettre ouverte à tous les catholiques, intitulée « Rerum Novarum » (« Du changement révolutionnaire »), dans laquelle il réfléchissait à la destruction de la vie des travailleurs par la révolution industrielle.

    Le samedi 10 mai, le pape Léon XIV a souligné la similitude avec l'IA, déclarant aux cardinaux : « À notre époque, l'Église offre à tous le trésor de son enseignement social en réponse à une autre révolution industrielle et aux développements dans le domaine de l'intelligence artificielle qui posent de nouveaux défis pour la défense de la dignité humaine, de la justice et du travail. »


    Une sortie qui intervient dans un contexte où la dignité humaine est effectivement malmenée sur les champs de bataille du fait de la mise à contribution de l’intelligence artificielle

    Israel par exemple se sert du système d’intelligence artificielle dénommé Gospel pour trouver des cibles à Gaza. Un autre système dénommé « Lavender » a fait surface dans le cadre d’une glaçante enquête sur la mise à contribution de l’intelligence artificielle par Israël contre les militants du Hamas. Lavender permet d’opérer la traque et la frappe des dirigeants du Hamas. Le système n’est pas exempt d’erreur et provoque la mort de 15 à 20 civils par frappe. Israël le déploie néanmoins en l’état, ce qui suggère que les dégâts en lien avec les faux positifs du système sont pris en compte comme dommages collatéraux.

    Grosso modo, tous les pays sont lancés dans le développement d’armes animées par l’intelligence artificielle : robots-chiens, drones, etc.

    L'armée américaine a effectué des tests de chiens-robots au Moyen-Orient. Du point de vue du développeur informatique, ces robots sont des kits matériels - à la présentation visuelle similaire à celle d’un chien sur pattes – programmables via une API fournie par le constructeur.

    Ces robots s’appuient à la base sur des applications de détection et suivi d’objets. Dans ce cas, il y a au préalable collecte des images provenant de caméras avant puis détection d’objet sur une classe spécifiée. Cette détection utilise Tensorflow via le tensorflow_object_detector. Le robot accepte n'importe quel modèle Tensorflow et permet au développeur de spécifier un sous-ensemble de classes de détection incluses dans le modèle. Il effectue cet ensemble d'opérations pour un nombre prédéfini d'itérations, en bloquant pendant une durée prédéfinie entre chaque itération. L'application détermine ensuite l'emplacement de la détection la plus fiable de la classe spécifiée et se dirige vers l'objet.

    L’application est organisée en trois ensembles de processus Python communiquant avec le robot Spot. Le diagramme des processus est illustré ci-dessous. Le processus principal communique avec le robot Spot via GRPC et reçoit constamment des images. Ces images sont poussées dans la RAW_IMAGES_QUEUE et lues par les processus Tensorflow. Ces processus détectent des objets dans les images et poussent l'emplacement dans PROCESSED_BOXES_QUEUE. Le thread principal détermine alors l'emplacement de l'objet et envoie des commandes au robot pour qu'il se dirige vers l'objet.

    Code Python : Sélectionner tout - Visualiser dans une fenêtre à part
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    231
    232
    233
    234
    235
    236
    237
    238
    239
    240
    241
    242
    243
    244
    245
    246
    247
    248
    249
    250
    251
    252
    253
    254
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
    265
    266
    267
    268
    269
    270
    271
    272
    273
    274
    275
    276
    277
    278
    279
    280
    281
    282
    283
    284
    285
    286
    287
    288
    289
    290
    291
    292
    293
    294
    295
    296
    297
    298
    299
    300
    301
    302
    303
    304
    305
    306
    307
    308
    309
    310
    311
    312
    313
    314
    315
    316
    317
    318
    319
    320
    321
    322
    323
    324
    325
    326
    327
    328
    329
    330
    331
    332
    333
    334
    335
    336
    337
    338
    339
    340
    341
    342
    343
    344
    345
    346
    347
    348
    349
    350
    351
    352
    353
    354
    355
    356
    357
    358
    359
    360
    361
    362
    363
    364
    365
    366
    367
    368
    369
    370
    371
    372
    373
    374
    375
    376
    377
    378
    379
    380
    381
    382
    383
    384
    385
    386
    387
    388
    389
    390
    391
    392
    393
    394
    395
    396
    397
    398
    399
    400
    401
    402
    403
    404
    405
    406
    407
    408
    409
    410
    411
    412
    413
    414
    415
    416
    417
    418
    419
    420
    421
    422
    423
    424
    425
    426
    427
    428
    429
    430
    431
    432
    433
    434
    435
    436
    437
    438
    439
    440
    441
    442
    443
    444
    445
    446
    447
    448
    449
    450
    451
    452
    453
    454
    455
    456
    457
    458
    459
    460
    461
    462
    463
    464
    465
    466
    467
    468
    469
    470
    471
    472
    473
    474
    475
    476
    477
    478
    479
    480
    481
    482
    483
    484
    485
    486
    487
    488
    489
    490
    491
    492
    493
    494
    495
    496
    497
    498
    499
    500
    501
    502
    503
    504
    505
    506
    507
    508
    509
    510
    511
    512
    513
    514
    515
    516
    517
    518
    519
    520
    521
    522
    523
    524
    525
    526
    527
    528
    529
    530
    531
    532
    533
    534
    535
    536
    537
    538
    539
    540
    541
    542
    543
    544
    545
    546
    547
    548
    549
    550
    551
    552
    553
    554
    555
    556
    557
    558
    559
    560
    561
    562
    563
    564
    565
    566
    567
    568
    569
    570
    571
    572
    573
    574
    575
    576
    577
    578
    579
    580
    581
    582
    583
    584
    585
    586
    587
    588
    589
    590
    591
    592
    593
    594
    595
    596
    597
    598
    599
    600
    601
    602
    603
    604
    605
    606
    607
    608
    609
    610
    611
    612
    613
    614
    615
    616
    617
    618
    619
    620
    621
    622
    623
    624
    625
    626
    627
    628
    629
    630
    631
    632
    633
    634
    635
    636
    637
    638
    639
    640
    641
    642
    643
    644
    645
    646
    647
    648
    649
    650
    651
    652
    653
    654
    655
    656
    657
    658
    659
    660
    661
    662
    663
    664
    665
    666
    667
    668
    669
    670
    671
    672
    673
    674
    675
    676
    677
    678
    679
    680
    681
    682
    683
    684
    685
    686
    687
    688
    689
    690
    691
    692
    693
    694
    695
    696
    697
    698
    699
    700
    701
    702
    703
    704
    705
    706
    707
    708
    709
    710
    711
    712
    713
    714
    715
    716
    717
    718
    719
    720
    721
    722
    723
    724
    725
    726
    727
    728
    729
    730
    731
    732
    733
    734
    735
    736
    737
    738
    739
    740
    741
    742
    743
    744
    745
    746
    747
    748
    749
    750
    751
    752
    753
    754
    755
    756
    757
    758
    759
    760
    761
    762
    763
    764
    765
    766
    767
    768
    769
    770
    771
    772
    773
    774
    775
    776
    777
    778
    779
    780
    781
    782
    783
    784
    785
    786
    787
    788
    789
    790
    791
    792
    793
    794
    795
    796
    797
    798
    799
    800
    801
    802
    803
    804
    805
    806
    807
    808
    809
    810
    811
    812
    813
    814
    815
    816
    817
    818
    819
    820
    821
    822
    823
    824
    825
    826
    827
    828
    829
    830
    831
    832
    833
    834
    835
    836
    837
    838
    839
    # Copyright (c) 2023 Boston Dynamics, Inc.  All rights reserved.  
    #  
    # Downloading, reproducing, distributing or otherwise using the SDK Software  
    # is subject to the terms and conditions of the Boston Dynamics Software  
    # Development Kit License (20191101-BDSDK-SL).  
     
    """Tutorial to show how to use the Boston Dynamics API to detect and follow an object"""  
    import argparse  
    import io  
    import json  
    import math  
    import os  
    import signal  
    import sys  
    import time  
    from multiprocessing import Barrier, Process, Queue, Value  
    from queue import Empty, Full  
    from threading import BrokenBarrierError, Thread  
     
    import cv2  
    import numpy as np  
    from PIL import Image  
    from scipy import ndimage  
    from tensorflow_object_detection import DetectorAPI  
     
    import bosdyn.client  
    import bosdyn.client.util  
    from bosdyn import geometry  
    from bosdyn.api import geometry_pb2 as geo  
    from bosdyn.api import image_pb2, trajectory_pb2  
    from bosdyn.api.image_pb2 import ImageSource  
    from bosdyn.api.spot import robot_command_pb2 as spot_command_pb2  
    from bosdyn.client.async_tasks import AsyncPeriodicQuery, AsyncTasks  
    from bosdyn.client.frame_helpers import (GROUND_PLANE_FRAME_NAME, VISION_FRAME_NAME, get_a_tform_b,  
                                             get_vision_tform_body)  
    from bosdyn.client.image import ImageClient  
    from bosdyn.client.lease import LeaseClient, LeaseKeepAlive  
    from bosdyn.client.math_helpers import Quat, SE3Pose  
    from bosdyn.client.robot_command import (CommandFailedError, CommandTimedOutError,  
                                             RobotCommandBuilder, RobotCommandClient, blocking_stand)  
    from bosdyn.client.robot_state import RobotStateClient  
     
    LOGGER = bosdyn.client.util.get_logger()  
     
    SHUTDOWN_FLAG = Value('i', 0)  
     
    # Don't let the queues get too backed up  
    QUEUE_MAXSIZE = 10  
     
    # This is a multiprocessing.Queue for communication between the main process and the  
    # Tensorflow processes.  
    # Entries in this queue are in the format:  
     
    # {  
    #     'source': Name of the camera,  
    #     'world_tform_cam': transform from VO to camera,  
    #     'world_tform_gpe':  transform from VO to ground plane,  
    #     'raw_image_time': Time when the image was collected,  
    #     'cv_image': The decoded image,  
    #     'visual_dims': (cols, rows),  
    #     'depth_image': depth image proto,  
    #     'system_cap_time': Time when the image was received by the main process,  
    #     'image_queued_time': Time when the image was done preprocessing and queued  
    # }  
    RAW_IMAGES_QUEUE = Queue(QUEUE_MAXSIZE)  
     
    # This is a multiprocessing.Queue for communication between the Tensorflow processes and  
    # the bbox print process. This is meant for running in a containerized environment with no access  
    # to an X display  
    # Entries in this queue have the following fields in addition to those in :  
    # {  
    #   'processed_image_start_time':  Time when the image was received by the TF process,  
    #   'processed_image_end_time':  Time when the image was processing for bounding boxes  
    #   'boxes': list of detected bounding boxes for the processed image  
    #   'classes': classes of objects,  
    #   'scores': confidence scores,  
    # }  
    PROCESSED_BOXES_QUEUE = Queue(QUEUE_MAXSIZE)  
     
    # Barrier for waiting on Tensorflow processes to start, initialized in main()  
    TENSORFLOW_PROCESS_BARRIER = None  
     
    COCO_CLASS_DICT = {  
        1: 'person',  
        2: 'bicycle',  
        3: 'car',  
        4: 'motorcycle',  
        5: 'airplane',  
        6: 'bus',  
        7: 'train',  
        8: 'truck',  
        9: 'boat',  
        10: 'trafficlight',  
        11: 'firehydrant',  
        13: 'stopsign',  
        14: 'parkingmeter',  
        15: 'bench',  
        16: 'bird',  
        17: 'cat',  
        18: 'dog',  
        19: 'horse',  
        20: 'sheep',  
        21: 'cow',  
        22: 'elephant',  
        23: 'bear',  
        24: 'zebra',  
        25: 'giraffe',  
        27: 'backpack',  
        28: 'umbrella',  
        31: 'handbag',  
        32: 'tie',  
        33: 'suitcase',  
        34: 'frisbee',  
        35: 'skis',  
        36: 'snowboard',  
        37: 'sportsball',  
        38: 'kite',  
        39: 'baseballbat',  
        40: 'baseballglove',  
        41: 'skateboard',  
        42: 'surfboard',  
        43: 'tennisracket',  
        44: 'bottle',  
        46: 'wineglass',  
        47: 'cup',  
        48: 'fork',  
        49: 'knife',  
        50: 'spoon',  
        51: 'bowl',  
        52: 'banana',  
        53: 'apple',  
        54: 'sandwich',  
        55: 'orange',  
        56: 'broccoli',  
        57: 'carrot',  
        58: 'hotdog',  
        59: 'pizza',  
        60: 'donut',  
        61: 'cake',  
        62: 'chair',  
        63: 'couch',  
        64: 'pottedplant',  
        65: 'bed',  
        67: 'diningtable',  
        70: 'toilet',  
        72: 'tv',  
        73: 'laptop',  
        74: 'mouse',  
        75: 'remote',  
        76: 'keyboard',  
        77: 'cellphone',  
        78: 'microwave',  
        79: 'oven',  
        80: 'toaster',  
        81: 'sink',  
        82: 'refrigerator',  
        84: 'book',  
        85: 'clock',  
        86: 'vase',  
        87: 'scissors',  
        88: 'teddybear',  
        89: 'hairdrier',  
        90: 'toothbrush'  
    }  
     
    # Mapping from visual to depth data  
    VISUAL_SOURCE_TO_DEPTH_MAP_SOURCE = {  
        'frontleft_fisheye_image': 'frontleft_depth_in_visual_frame',  
        'frontright_fisheye_image': 'frontright_depth_in_visual_frame'  
    }  
    ROTATION_ANGLES = {  
        'back_fisheye_image': 0,  
        'frontleft_fisheye_image': -78,  
        'frontright_fisheye_image': -102,  
        'left_fisheye_image': 0,  
        'right_fisheye_image': 180  
    }  
     
     
    def _update_thread(async_task):  
        while True:  
            async_task.update()  
            time.sleep(0.01)  
     
     
    class AsyncImage(AsyncPeriodicQuery):  
        """Grab image."""  
     
        def __init__(self, image_client, image_sources):  
            # Period is set to be about 15 FPS  
            super(AsyncImage, self).__init__('images', image_client, LOGGER, period_sec=0.067)  
            self.image_sources = image_sources  
     
        def _start_query(self):  
            return self._client.get_image_from_sources_async(self.image_sources)  
     
     
    class AsyncRobotState(AsyncPeriodicQuery):  
        """Grab robot state."""  
     
        def __init__(self, robot_state_client):  
            # period is set to be about the same rate as detections on the CORE AI  
            super(AsyncRobotState, self).__init__('robot_state', robot_state_client, LOGGER,  
                                                  period_sec=0.02)  
     
        def _start_query(self):  
            return self._client.get_robot_state_async()  
     
     
    def get_source_list(image_client):  
        """Gets a list of image sources and filters based on config dictionary  
       
        Args:  
            image_client: Instantiated image client  
        """  
     
        # We are using only the visual images with their corresponding depth sensors  
        sources = image_client.list_image_sources()  
        source_list = []  
        for source in sources:  
            if source.image_type == ImageSource.IMAGE_TYPE_VISUAL:  
                # only append if sensor has corresponding depth sensor  
                if source.name in VISUAL_SOURCE_TO_DEPTH_MAP_SOURCE:  
                    source_list.append(source.name)  
                    source_list.append(VISUAL_SOURCE_TO_DEPTH_MAP_SOURCE[source.name])  
        return source_list  
     
     
    def capture_images(image_task, sleep_between_capture):  
        """ Captures images and places them on the queue  
       
        Args:  
            image_task (AsyncImage): Async task that provides the images response to use  
            sleep_between_capture (float): Time to sleep between each image capture  
        """  
        while not SHUTDOWN_FLAG.value:  
            get_im_resp = image_task.proto  
            start_time = time.time()  
            if not get_im_resp:  
                continue  
            depth_responses = {  
                img.source.name: img  
                for img in get_im_resp  
                if img.source.image_type == ImageSource.IMAGE_TYPE_DEPTH  
            }  
            entry = {}  
            for im_resp in get_im_resp:  
                if im_resp.source.image_type == ImageSource.IMAGE_TYPE_VISUAL:  
                    source = im_resp.source.name  
                    depth_source = VISUAL_SOURCE_TO_DEPTH_MAP_SOURCE[source]  
                    depth_image = depth_responses[depth_source]  
     
                    acquisition_time = im_resp.shot.acquisition_time  
                    image_time = acquisition_time.seconds + acquisition_time.nanos * 1e-9  
     
                    try:  
                        image = Image.open(io.BytesIO(im_resp.shot.image.data))  
                        source = im_resp.source.name  
     
                        image = ndimage.rotate(image, ROTATION_ANGLES[source])  
                        if im_resp.shot.image.pixel_format == image_pb2.Image.PIXEL_FORMAT_GREYSCALE_U8:  
                            image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)  # Converted to RGB for TF  
                        tform_snapshot = im_resp.shot.transforms_snapshot  
                        frame_name = im_resp.shot.frame_name_image_sensor  
                        world_tform_cam = get_a_tform_b(tform_snapshot, VISION_FRAME_NAME, frame_name)  
                        world_tform_gpe = get_a_tform_b(tform_snapshot, VISION_FRAME_NAME,  
                                                        GROUND_PLANE_FRAME_NAME)  
                        entry[source] = {  
                            'source': source,  
                            'world_tform_cam': world_tform_cam,  
                            'world_tform_gpe': world_tform_gpe,  
                            'raw_image_time': image_time,  
                            'cv_image': image,  
                            'visual_dims': (im_resp.shot.image.cols, im_resp.shot.image.rows),  
                            'depth_image': depth_image,  
                            'system_cap_time': start_time,  
                            'image_queued_time': time.time()  
                        }  
                    except Exception as exc:  # pylint: disable=broad-except  
                        print(f'Exception occurred during image capture {exc}')  
            try:  
                RAW_IMAGES_QUEUE.put_nowait(entry)  
            except Full as exc:  
                print(f'RAW_IMAGES_QUEUE is full: {exc}')  
            time.sleep(sleep_between_capture)  
     
     
    def start_tensorflow_processes(num_processes, model_path, detection_class, detection_threshold,  
                                   max_processing_delay):  
        """Starts Tensorflow processes in parallel.  
       
        It does not keep track of the processes once they are started because they run indefinitely  
        and are never joined back to the main process.  
       
        Args:  
            num_processes (int): Number of Tensorflow processes to start in parallel.  
            model_path (str): Filepath to the Tensorflow model to use.  
            detection_class (int): Detection class to detect  
            detection_threshold (float): Detection threshold to apply to all Tensorflow detections.  
            max_processing_delay (float): Allowed delay before processing an incoming image.  
        """  
        processes = []  
        for _ in range(num_processes):  
            process = Process(  
                target=process_images, args=(  
                    model_path,  
                    detection_class,  
                    detection_threshold,  
                    max_processing_delay,  
                ), daemon=True)  
            process.start()  
            processes.append(process)  
        return processes  
     
     
    def process_images(model_path, detection_class, detection_threshold, max_processing_delay):  
        """Starts Tensorflow and detects objects in the incoming images.  
       
        Args:  
            model_path (str): Filepath to the Tensorflow model to use.  
            detection_class (int): Detection class to detect  
            detection_threshold (float): Detection threshold to apply to all Tensorflow detections.  
            max_processing_delay (float): Allowed delay before processing an incoming image.  
        """  
     
        odapi = DetectorAPI(path_to_ckpt=model_path)  
        num_processed_skips = 0  
     
        if TENSORFLOW_PROCESS_BARRIER is None:  
            return  
     
        try:  
            TENSORFLOW_PROCESS_BARRIER.wait()  
        except BrokenBarrierError as exc:  
            print(f'Error waiting for Tensorflow processes to initialize: {exc}')  
            return False  
     
        while not SHUTDOWN_FLAG.value:  
            try:  
                entry = RAW_IMAGES_QUEUE.get_nowait()  
            except Empty:  
                time.sleep(0.1)  
                continue  
            for _, capture in entry.items():  
                start_time = time.time()  
                processing_delay = time.time() - capture['raw_image_time']  
                if processing_delay > max_processing_delay:  
                    num_processed_skips += 1  
                    print(f'skipped image because it took {processing_delay}')  
                    continue  # Skip image due to delay  
     
                image = capture['cv_image']  
                boxes, scores, classes, _ = odapi.process_frame(image)  
                confident_boxes = []  
                confident_object_classes = []  
                confident_scores = []  
                if len(boxes) == 0:  
                    print('no detections founds')  
                    continue  
                for box, score, box_class in sorted(zip(boxes, scores, classes), key=lambda x: x[1],  
                                                    reverse=True):  
                    if score > detection_threshold and box_class == detection_class:  
                        confident_boxes.append(box)  
                        confident_object_classes.append(COCO_CLASS_DICT[box_class])  
                        confident_scores.append(score)  
                        image = cv2.rectangle(image, (box[1], box[0]), (box[3], box[2]), (255, 0, 0), 2)  
     
                capture['processed_image_start_time'] = start_time  
                capture['processed_image_end_time'] = time.time()  
                capture['boxes'] = confident_boxes  
                capture['classes'] = confident_object_classes  
                capture['scores'] = confident_scores  
                capture['cv_image'] = image  
            try:  
                PROCESSED_BOXES_QUEUE.put_nowait(entry)  
            except Full as exc:  
                print(f'PROCESSED_BOXES_QUEUE is full: {exc}')  
        print('tf process ending')  
        return True  
     
     
    def get_go_to(world_tform_object, robot_state, mobility_params, dist_margin=0.5):  
        """Gets trajectory command to a goal location  
       
        Args:  
            world_tform_object (SE3Pose): Transform from vision frame to target object  
            robot_state (RobotState): Current robot state  
            mobility_params (MobilityParams): Mobility parameters  
            dist_margin (float): Distance margin to target  
        """  
        vo_tform_robot = get_vision_tform_body(robot_state.kinematic_state.transforms_snapshot)  
        print(f'robot pos: {vo_tform_robot}')  
        delta_ewrt_vo = np.array(  
            [world_tform_object.x - vo_tform_robot.x, world_tform_object.y - vo_tform_robot.y, 0])  
        norm = np.linalg.norm(delta_ewrt_vo)  
        if norm == 0:  
            return None  
        delta_ewrt_vo_norm = delta_ewrt_vo / norm  
        heading = _get_heading(delta_ewrt_vo_norm)  
        vo_tform_goal = np.array([  
            world_tform_object.x - delta_ewrt_vo_norm[0] * dist_margin,  
            world_tform_object.y - delta_ewrt_vo_norm[1] * dist_margin  
        ])  
        se2_pose = geo.SE2Pose(position=geo.Vec2(x=vo_tform_goal[0], y=vo_tform_goal[1]), angle=heading)  
        tag_cmd = RobotCommandBuilder.synchro_se2_trajectory_command(se2_pose,  
                                                                     frame_name=VISION_FRAME_NAME,  
                                                                     params=mobility_params)  
        return tag_cmd  
     
     
    def _get_heading(xhat):  
        zhat = [0.0, 0.0, 1.0]  
        yhat = np.cross(zhat, xhat)  
        mat = np.array([xhat, yhat, zhat]).transpose()  
        return Quat.from_matrix(mat).to_yaw()  
     
     
    def set_default_body_control():  
        """Set default body control params to current body position"""  
        footprint_R_body = geometry.EulerZXY()  
        position = geo.Vec3(x=0.0, y=0.0, z=0.0)  
        rotation = footprint_R_body.to_quaternion()  
        pose = geo.SE3Pose(position=position, rotation=rotation)  
        point = trajectory_pb2.SE3TrajectoryPoint(pose=pose)  
        traj = trajectory_pb2.SE3Trajectory(points=[point])  
        return spot_command_pb2.BodyControlParams(base_offset_rt_footprint=traj)  
     
     
    def get_mobility_params():  
        """Gets mobility parameters for following"""  
        vel_desired = .75  
        speed_limit = geo.SE2VelocityLimit(  
            max_vel=geo.SE2Velocity(linear=geo.Vec2(x=vel_desired, y=vel_desired), angular=.25))  
        body_control = set_default_body_control()  
        mobility_params = spot_command_pb2.MobilityParams(vel_limit=speed_limit, obstacle_params=None,  
                                                          body_control=body_control,  
                                                          locomotion_hint=spot_command_pb2.HINT_TROT)  
        return mobility_params  
     
     
    def depth_to_xyz(depth, pixel_x, pixel_y, focal_length, principal_point):  
        """Calculate the transform to point in image using camera intrinsics and depth"""  
        x = depth * (pixel_x - principal_point.x) / focal_length.x  
        y = depth * (pixel_y - principal_point.y) / focal_length.y  
        z = depth  
        return x, y, z  
     
     
    def remove_ground_from_depth_image(raw_depth_image, focal_length, principal_point, world_tform_cam,  
                                       world_tform_gpe, ground_tolerance=0.04):  
        """ Simple ground plane removal algorithm. Uses ground height  
            and does simple z distance filtering.  
       
        Args:  
            raw_depth_image (np.array): Depth image  
            focal_length (Vec2): Focal length of camera that produced the depth image  
            principal_point (Vec2): Principal point of camera that produced the depth image  
            world_tform_cam (SE3Pose): Transform from VO to camera frame  
            world_tform_gpe (SE3Pose): Transform from VO to GPE frame  
            ground_tolerance (float): Distance in meters to add to the ground plane  
        """  
        new_depth_image = raw_depth_image  
     
        # same functions as depth_to_xyz, but converted to np functions  
        indices = np.indices(raw_depth_image.shape)  
        xs = raw_depth_image * (indices[1] - principal_point.x) / focal_length.x  
        ys = raw_depth_image * (indices[0] - principal_point.y) / focal_length.y  
        zs = raw_depth_image  
     
        # create xyz point cloud  
        camera_tform_points = np.stack([xs, ys, zs], axis=2)  
        # points in VO frame  
        world_tform_points = world_tform_cam.transform_cloud(camera_tform_points)  
        # array of booleans where True means the point was below the ground plane plus tolerance  
        world_tform_points_mask = (world_tform_gpe.z - world_tform_points[:, :, 2]) < ground_tolerance  
        # remove data below ground plane  
        new_depth_image[world_tform_points_mask] = 0  
        return new_depth_image  
     
     
    def get_distance_to_closest_object_depth(x_min, x_max, y_min, y_max, depth_scale, raw_depth_image,  
                                             histogram_bin_size=0.50, minimum_number_of_points=10,  
                                             max_distance=8.0):  
        """Make a histogram of distances to points in the cloud and take the closest distance with  
        enough points.  
       
        Args:  
            x_min (int): minimum x coordinate (column) of object to find  
            x_max (int): maximum x coordinate (column) of object to find  
            y_min (int): minimum y coordinate (row) of object to find  
            y_max (int): maximum y coordinate (row) of object to find  
            depth_scale (float): depth scale of the image to convert from sensor value to meters  
            raw_depth_image (np.array): matrix of depth pixels  
            histogram_bin_size (float): size of each bin of distances  
            minimum_number_of_points (int): minimum number of points before returning depth  
            max_distance (float): maximum distance to object in meters  
        """  
        num_bins = math.ceil(max_distance / histogram_bin_size)  
     
        # get a sub-rectangle of the bounding box out of the whole image, then flatten  
        obj_depths = (raw_depth_image[y_min:y_max, x_min:x_max]).flatten()  
        obj_depths = obj_depths / depth_scale  
        obj_depths = obj_depths[obj_depths != 0]  
     
        hist, hist_edges = np.histogram(obj_depths, bins=num_bins, range=(0, max_distance))  
     
        edges_zipped = zip(hist_edges[:-1], hist_edges[1:])  
        # Iterate over the histogram and return the first distance with enough points.  
        for entry, edges in zip(hist, edges_zipped):  
            if entry > minimum_number_of_points:  
                filtered_depths = obj_depths[(obj_depths > edges[0]) & (obj_depths < edges[1])]  
                if len(filtered_depths) == 0:  
                    continue  
                return np.mean(filtered_depths)  
     
        return max_distance  
     
     
    def rotate_about_origin_degrees(origin, point, angle):  
        """  
        Rotate a point counterclockwise by a given angle around a given origin.  
       
        Args:  
            origin (tuple): Origin to rotate the point around  
            point (tuple): Point to rotate  
            angle (float): Angle in degrees  
        """  
        return rotate_about_origin(origin, point, math.radians(angle))  
     
     
    def rotate_about_origin(origin, point, angle):  
        """  
        Rotate a point counterclockwise by a given angle around a given origin.  
       
        Args:  
            origin (tuple): Origin to rotate the point around  
            point (tuple): Point to rotate  
            angle (float): Angle in radians  
        """  
        orig_x, orig_y = origin  
        pnt_x, pnt_y = point  
     
        ret_x = orig_x + math.cos(angle) * (pnt_x - orig_x) - math.sin(angle) * (pnt_y - orig_y)  
        ret_y = orig_y + math.sin(angle) * (pnt_x - orig_x) + math.cos(angle) * (pnt_y - orig_y)  
        return int(ret_x), int(ret_y)  
     
     
    def get_object_position(world_tform_cam, world_tform_gpe, visual_dims, depth_image, bounding_box,  
                            rotation_angle):  
        """  
        Extract the bounding box, then find the mode in that region.  
       
        Args:  
            world_tform_cam (SE3Pose): SE3 transform from world to camera frame  
            visual_dims (Tuple): (cols, rows) tuple from the visual image  
            depth_image (ImageResponse): From a depth camera corresponding to the visual_image  
            bounding_box (list): Bounding box from tensorflow  
            rotation_angle (float): Angle (in degrees) to rotate depth image to match cam image rotation  
        """  
     
        # Make sure there are two images.  
        if visual_dims is None or depth_image is None:  
            # Fail.  
            return  
     
        # Rotate bounding box back to original frame  
        points = [(bounding_box[1], bounding_box[0]), (bounding_box[3], bounding_box[0]),  
                  (bounding_box[3], bounding_box[2]), (bounding_box[1], bounding_box[2])]  
     
        origin = (visual_dims[0] / 2, visual_dims[1] / 2)  
     
        points_rot = [rotate_about_origin_degrees(origin, point, rotation_angle) for point in points]  
     
        # Get the bounding box corners.  
        y_min = max(0, min([point[1] for point in points_rot]))  
        x_min = max(0, min([point[0] for point in points_rot]))  
        y_max = min(visual_dims[1], max([point[1] for point in points_rot]))  
        x_max = min(visual_dims[0], max([point[0] for point in points_rot]))  
     
        # Check that the bounding box is valid.  
        if (x_min < 0 or y_min < 0 or x_max > visual_dims[0] or y_max > visual_dims[1]):  
            print(f'Bounding box is invalid: ({x_min}, {y_min}) | ({x_max}, {y_max})')  
            print(f'Bounds: ({visual_dims[0]}, {visual_dims[1]})')  
            return  
     
        # Unpack the images.  
        try:  
            if depth_image.shot.image.pixel_format == image_pb2.Image.PIXEL_FORMAT_DEPTH_U16:  
                dtype = np.uint16  
            else:  
                dtype = np.uint8  
            img = np.fromstring(depth_image.shot.image.data, dtype=dtype)  
            if depth_image.shot.image.format == image_pb2.Image.FORMAT_RAW:  
                img = img.reshape(depth_image.shot.image.rows, depth_image.shot.image.cols)  
            else:  
                img = cv2.imdecode(img, -1)  
            depth_image_pixels = img  
            depth_image_pixels = remove_ground_from_depth_image(  
                depth_image_pixels, depth_image.source.pinhole.intrinsics.focal_length,  
                depth_image.source.pinhole.intrinsics.principal_point, world_tform_cam, world_tform_gpe)  
            # Get the depth data from the region in the bounding box.  
            max_distance = 8.0  
            depth = get_distance_to_closest_object_depth(x_min, x_max, y_min, y_max,  
                                                         depth_image.source.depth_scale,  
                                                         depth_image_pixels, max_distance=max_distance)  
     
            if depth >= max_distance:  
                # Not enough depth data.  
                print('Not enough depth data.')  
                return False  
            else:  
                print(f'distance to object: {depth}')  
     
            center_x = round((x_max - x_min) / 2.0 + x_min)  
            center_y = round((y_max - y_min) / 2.0 + y_min)  
     
            tform_x, tform_y, tform_z = depth_to_xyz(  
                depth, center_x, center_y, depth_image.source.pinhole.intrinsics.focal_length,  
                depth_image.source.pinhole.intrinsics.principal_point)  
            camera_tform_obj = SE3Pose(tform_x, tform_y, tform_z, Quat())  
     
            return world_tform_cam * camera_tform_obj  
        except Exception as exc:  # pylint: disable=broad-except  
            print(f'Error getting object position: {exc}')  
            return  
     
     
    def _check_model_path(model_path):  
        if model_path is None or \  
        not os.path.exists(model_path) or \  
        not os.path.isfile(model_path):  
            print(f'ERROR, could not find model file {model_path}')  
            return False  
        return True  
     
     
    def _check_and_load_json_classes(config_path):  
        if os.path.isfile(config_path):  
            with open(config_path) as json_classes:  
                global COCO_CLASS_DICT  # pylint: disable=global-statement  
                COCO_CLASS_DICT = json.load(json_classes)  
     
     
    def _find_highest_conf_source(processed_boxes_entry):  
        highest_conf_source = None  
        max_score = 0  
        for key, capture in processed_boxes_entry.items():  
            if 'scores' in capture.keys():  
                if len(capture['scores']) > 0 and capture['scores'][0] > max_score:  
                    highest_conf_source = key  
                    max_score = capture['scores'][0]  
        return highest_conf_source  
     
     
    def signal_handler(signal, frame):  
        print('Interrupt caught, shutting down')  
        SHUTDOWN_FLAG.value = 1  
     
     
    def main():  
        """Command line interface."""  
     
        parser = argparse.ArgumentParser()  
        parser.add_argument(  
            '--model-path', default='/model.pb', help=  
            ('Local file path to the Tensorflow model, example pre-trained models can be found at '  
             'https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md'  
            ))  
        parser.add_argument('--classes', default='/classes.json', type=str,  
                            help='File containing json mapping of object class IDs to class names')  
        parser.add_argument('--number-tensorflow-processes', default=1, type=int,  
                            help='Number of Tensorflow processes to run in parallel')  
        parser.add_argument('--detection-threshold', default=0.7, type=float,  
                            help='Detection threshold to use for Tensorflow detections')  
        parser.add_argument(  
            '--sleep-between-capture', default=0.2, type=float,  
            help=('Seconds to sleep between each image capture loop iteration, which captures '  
                  'an image from all cameras'))  
        parser.add_argument(  
            '--detection-class', default=1, type=int,  
            help=('Detection classes to use in the Tensorflow model.'  
                  'Default is to use 1, which is a person in the Coco dataset'))  
        parser.add_argument(  
            '--max-processing-delay', default=7.0, type=float,  
            help=('Maximum allowed delay for processing an image. '  
                  'Any image older than this value will be skipped'))  
        parser.add_argument('--test-mode', action='store_true',  
                            help='Run application in test mode, don\'t execute commands')  
     
        bosdyn.client.util.add_base_arguments(parser)  
        bosdyn.client.util.add_payload_credentials_arguments(parser)  
        options = parser.parse_args()  
        signal.signal(signal.SIGINT, signal_handler)  
        try:  
            # Make sure the model path is a valid file  
            if not _check_model_path(options.model_path):  
                return False  
     
            # Check for classes json file, otherwise use the COCO class dictionary  
            _check_and_load_json_classes(options.classes)  
     
            global TENSORFLOW_PROCESS_BARRIER  # pylint: disable=global-statement  
            TENSORFLOW_PROCESS_BARRIER = Barrier(options.number_tensorflow_processes + 1)  
            # Start Tensorflow processes  
            tf_processes = start_tensorflow_processes(options.number_tensorflow_processes,  
                                                      options.model_path, options.detection_class,  
                                                      options.detection_threshold,  
                                                      options.max_processing_delay)  
     
            # sleep to give the Tensorflow processes time to initialize  
            try:  
                TENSORFLOW_PROCESS_BARRIER.wait()  
            except BrokenBarrierError as exc:  
                print(f'Error waiting for Tensorflow processes to initialize: {exc}')  
                return False  
            # Start the API related things  
     
            # Create robot object with a world object client  
            sdk = bosdyn.client.create_standard_sdk('SpotFollowClient')  
            robot = sdk.create_robot(options.hostname)  
     
            if options.payload_credentials_file:  
                robot.authenticate_from_payload_credentials(  
                    *bosdyn.client.util.get_guid_and_secret(options))  
            else:  
                bosdyn.client.util.authenticate(robot)  
     
            # Time sync is necessary so that time-based filter requests can be converted  
            robot.time_sync.wait_for_sync()  
     
            # Verify the robot is not estopped and that an external application has registered and holds  
            # an estop endpoint.  
            assert not robot.is_estopped(), 'Robot is estopped. Please use an external E-Stop client,' \  
                                            ' such as the estop SDK example, to configure E-Stop.'  
     
            # Create the sdk clients  
            robot_state_client = robot.ensure_client(RobotStateClient.default_service_name)  
            robot_command_client = robot.ensure_client(RobotCommandClient.default_service_name)  
            lease_client = robot.ensure_client(LeaseClient.default_service_name)  
            image_client = robot.ensure_client(ImageClient.default_service_name)  
            source_list = get_source_list(image_client)  
            image_task = AsyncImage(image_client, source_list)  
            robot_state_task = AsyncRobotState(robot_state_client)  
            task_list = [image_task, robot_state_task]  
            _async_tasks = AsyncTasks(task_list)  
            print('Detect and follow client connected.')  
     
            lease = lease_client.take()  
            lease_keep = LeaseKeepAlive(lease_client)  
            # Power on the robot and stand it up  
            resp = robot.power_on()  
            try:  
                blocking_stand(robot_command_client)  
            except CommandFailedError as exc:  
                print(f'Error ({exc}) occurred while trying to stand. Check robot surroundings.')  
                return False  
            except CommandTimedOutError as exc:  
                print(f'Stand command timed out: {exc}')  
                return False  
            print('Robot powered on and standing.')  
            params_set = get_mobility_params()  
     
            # This thread starts the async tasks for image and robot state retrieval  
            update_thread = Thread(target=_update_thread, args=[_async_tasks])  
            update_thread.daemon = True  
            update_thread.start()  
            # Wait for the first responses.  
            while any(task.proto is None for task in task_list):  
                time.sleep(0.1)  
     
            # Start image capture process  
            image_capture_thread = Process(target=capture_images,  
                                           args=(image_task, options.sleep_between_capture),  
                                           daemon=True)  
            image_capture_thread.start()  
            while not SHUTDOWN_FLAG.value:  
                # This comes from the tensorflow processes and limits the rate of this loop  
                try:  
                    entry = PROCESSED_BOXES_QUEUE.get_nowait()  
                except Empty:  
                    continue  
                # find the highest confidence bounding box  
                highest_conf_source = _find_highest_conf_source(entry)  
                if highest_conf_source is None:  
                    # no boxes or scores found  
                    continue  
                capture_to_use = entry[highest_conf_source]  
                raw_time = capture_to_use['raw_image_time']  
                time_gap = time.time() - raw_time  
                if time_gap > options.max_processing_delay:  
                    continue  # Skip image due to delay  
     
                # Find the transform to the highest confidence object using the depth sensor  
                get_object_position_start = time.time()  
                robot_state = robot_state_task.proto  
                world_tform_gpe = get_a_tform_b(robot_state.kinematic_state.transforms_snapshot,  
                                                VISION_FRAME_NAME, GROUND_PLANE_FRAME_NAME)  
                world_tform_object = get_object_position(  
                    capture_to_use['world_tform_cam'], world_tform_gpe, capture_to_use['visual_dims'],  
                    capture_to_use['depth_image'], capture_to_use['boxes'][0],  
                    ROTATION_ANGLES[capture_to_use['source']])  
                get_object_position_end = time.time()  
                print(f'system_cap_time: {capture_to_use["system_cap_time"]}, '  
                      f'image_queued_time: {capture_to_use["image_queued_time"]}, '  
                      f'processed_image_start_time: {capture_to_use["processed_image_start_time"]}, '  
                      f'processed_image_end_time: {capture_to_use["processed_image_end_time"]}, '  
                      f'get_object_position_start_time: {get_object_position_start}, '  
                      f'get_object_position_end_time: {get_object_position_end}, ')  
     
                # get_object_position can fail if there is insufficient depth sensor information  
                if not world_tform_object:  
                    continue  
     
                scores = capture_to_use['scores']  
                print(f'Position of object with confidence {scores[0]}: {world_tform_object}')  
                print(f'Process latency: {time.time() - capture_to_use["system_cap_time"]}')  
                tag_cmd = get_go_to(world_tform_object, robot_state, params_set)  
                end_time = 15.0  
                if tag_cmd is not None:  
                    if not options.test_mode:  
                        print('executing command')  
                        robot_command_client.robot_command(lease=None, command=tag_cmd,  
                                                           end_time_secs=time.time() + end_time)  
                    else:  
                        print('Running in test mode, skipping command.')  
     
            # Shutdown lease keep-alive and return lease gracefully.  
            lease_keep.shutdown()  
            lease_client.return_lease(lease)  
            return True  
        except Exception as exc:  # pylint: disable=broad-except  
            LOGGER.error('Spot Tensorflow Detector threw an exception: %s', exc)  
            # Shutdown lease keep-alive and return lease gracefully.  
            return False   
     
     
    if __name__ == '__main__':  
        if not main():  
            sys.exit(1)

    L’initiative américaine se faisait dans un contexte de course à l’armement de robots à 4 pattes pour des applications militaires. L'armée chinoise a dévoilé un nouveau type de compagnon de combat pour ses soldats : un robot-chien avec une mitrailleuse attachée à son dos. Dans une vidéo diffusée par l'agence de presse gouvernementale CCTV, on voit des membres des militaires chinois opérer sur un champ de tir aux côtés d'un robot à quatre pattes sur lequel est monté ce qui semble être une variante du fusil d'assaut QBZ-95 de 5,8 x 42 mm, dans le cadre des récents exercices militaires conjoints Golden Dragon 24 menés par la Chine et le Cambodge dans le golfe de Thaïlande.

    En 2023, le Pentagone a expérimenté l'équipement de robots terrestres quadrupèdes avec sa carabine standard M4A1 de 5,56 x 45 mm, le fusil XM7 de 6,8 mm que l'armée américaine est en train d'adopter dans le cadre de son programme « Next Generation Squad Weapon », et même l'arme antichar légère M72 qui est en service au sein des troupes américaines depuis la guerre du Vietnam. Quelques semaines avant que CCTV ne publie ses images de chiens robots armés en action, le Marine Corps Special Operations Command (MARSOC) a révélé qu'il expérimentait l'ajout à ses propres chiens mécanisés de systèmes d'armes montés basés sur le système d'armes à distance SENTRY de l'entreprise de défense Onyx, basé sur l'intelligence artificielle.

    Les responsables américains de la défense se sont empressés de souligner que le développement de robots-chiens armés était, à ce stade, purement expérimental, destiné à aider les planificateurs militaires à explorer le domaine du possible en ce qui concerne les applications potentielles de systèmes robotiques révolutionnaires dans un futur conflit, comme l'a déclaré un responsable de l'armée en août dernier. Mais comme les soldats de l'armée de terre effectuent des exercices d'assaut urbain avec des robots-chiens et que le corps des Marines envisage de plus en plus d'utiliser des quadrupèdes mécaniques pour renforcer les formations futures grâce à la robotique intelligente, l'armée américaine pourrait bien être obligée d'envisager sérieusement d'adopter des chiens robots armés pour le combat, avant la Chine.

    C’est l’une des raisons pour laquelle l’on est d’avis au Vatican que cette technologie est porteuse de « l’ombre du mal »

    C’est un positionnement qui s’inscrit en droite ligne avec celui du pape François qui a prononcé un discours historique devant les dirigeants du G7, les exhortant à reconnaître qu'ils ont le pouvoir de décider si l'intelligence artificielle devient un outil terrifiant ou créatif, et leur demandant d'interdire l'utilisation d'armes autonomes dans les guerres. Sa sortie s’inscrit dans la suite du Rome Call for AI Ethics et de l’appel à un traité mondial contraignant pour réglementer l’intelligence artificielle.

    « Nous condamnerions l'humanité à un avenir sans espoir si nous retirions aux gens la capacité de prendre des décisions sur eux-mêmes et sur leur vie », a déclaré le Pape François lors du dernier sommet du G7 en Italie.

    « À la lumière de la tragédie que constituent les conflits armés, il est urgent de reconsidérer le développement et l'utilisation de dispositifs tels que les armes autonomes létales et, à terme, d'en interdire l'usage.

    Cela commence par un engagement effectif et concret à introduire un contrôle humain toujours plus important et adéquat. Aucune machine ne devrait jamais choisir de prendre la vie d'un être humain.

    Une telle mesure représenterait un affaiblissement du sens de l'humanité et du concept de dignité humaine », a-t-il ajouté.

    Et vous ?

    Êtes-vous surpris de la mise à contribution de l’intelligence artificielle sur les champs de bataille ?
    Quelle appréciation faites-vous des sorties du pape dans un contexte global fait de course à l'armement animé par l'intelligence artificielle ? Utiles ou pas ?

    Voir aussi :

    Sermons automatisés : l'IA Rabbin Bot génère un sermon et le lit avec une version clonée de la voix d'un rabbin. Le reflet d'une tendance plus large des responsables religieux qui expérimentent l'IA

    Une version IA de Jesus écoute désormais les confessions des fidèles dans une église en Suisse. Le tableau relance les questionnements autour de l'automatisation du clergé par l'intelligence artificielle

    [Trolldi] Révélations choquantes : l'IA a-t-elle écrit la Sainte Bible ? Oui, selon les conclusions de ZeroGPT, un détecteur de contenu généré par IA présenté comme étant «le plus avancé et fiable»
    Contribuez au club : Corrections, suggestions, critiques, ... : Contactez le service news et Rédigez des actualités

  7. #7
    Membre éprouvé Avatar de Satch
    Homme Profil pro
    Hypnothérapeute - Magicien
    Inscrit en
    Mars 2004
    Messages
    500
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Âge : 44
    Localisation : Suisse

    Informations professionnelles :
    Activité : Hypnothérapeute - Magicien

    Informations forums :
    Inscription : Mars 2004
    Messages : 500
    Par défaut Heu...
    C'est bien connu que le pape a les connaissances nécessaires pour juger de la pertinence, ou non, de l'ia...

Discussions similaires

  1. Réponses: 0
    Dernier message: 14/10/2020, 15h05
  2. un windows XP comme serveur ntp pour des machines Linux
    Par pcouas dans le forum Windows XP
    Réponses: 5
    Dernier message: 06/01/2012, 11h42
  3. Changer la cible de recherche (comme barre de recherche des navigateurs)
    Par eric41 dans le forum Général JavaScript
    Réponses: 1
    Dernier message: 24/02/2009, 13h02
  4. Réponses: 13
    Dernier message: 03/12/2008, 14h54
  5. Réponses: 5
    Dernier message: 31/12/2005, 14h14

Partager

Partager
  • Envoyer la discussion sur Viadeo
  • Envoyer la discussion sur Twitter
  • Envoyer la discussion sur Google
  • Envoyer la discussion sur Facebook
  • Envoyer la discussion sur Digg
  • Envoyer la discussion sur Delicious
  • Envoyer la discussion sur MySpace
  • Envoyer la discussion sur Yahoo