1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
| public class Snake {
// Points of the snake
private List<Point> snake;
// Length of the snake (euclidean distance)
private double snakelength=0;
// size of the image (and of the 2 arrays below)
private int width=0,height=0;
// gradient value (modulus)
private int[][] gradient;
// gradient flow (modulus)
private int[][] flow;
// 3x3 neighborhood used to compute energies
private double[][] e_uniformity = new double[3][3];
private double[][] e_curvature = new double[3][3];
private double[][] e_flow = new double[3][3];
private double[][] e_inertia = new double[3][3];
// auto add/remove points to the snake
// according to distance between points
private boolean AUTOADAPT=true;
private static int AUTOADAPT_LOOP=10;
private static int AUTOADAPT_MINLEN=8;
private static int AUTOADAPT_MAXLEN=16;
// maximum number of iterations (if no convergence)
private static int MAXITERATION = 1000;
// coefficients for the 4 energy functions
public double alpha=1.1, beta=1.2, gamma=1.5, delta=3.0;
// alpha = coefficient for uniformity (high => force equals distance between points)
// beta = coefficient for curvature (high => force smooth curvature)
// gamma = coefficient for flow (high => force gradient attraction)
// delta = coefficient for intertia (high => get stuck to gradient)
/**
* Constructor
*
* @param width,height size of the image and of the 2 following arrays
* @param gradient gradient (modulus)
* @param flow gradient flow (modulus)
* @param points inital points of the snake
*/
public Snake(int width, int height, int[][] gradient, int[][] flow, Point... points) {
this.snake = new ArrayList<Point>(Arrays.asList(points));
this.gradient = gradient;
this.flow = flow;
this.width = width;
this.height = height;
}
// add here the other methods.
}
Les méthodes de l'algorithme "snake"
Code java :
/**
* main loop
*
* @return the final snake
*/
public List<Point> loop() {
int loop=0;
while(step() && loop<MAXITERATION) {
// auto adapt the number of points in the snake
if (AUTOADAPT && (loop%AUTOADAPT_LOOP)==0) {
removeOverlappingPoints(AUTOADAPT_MINLEN);
addMissingPoints(AUTOADAPT_MAXLEN);
}
loop++;
}
// rebuild using spline interpolation
if (AUTOADAPT) rebuild(AUTOADAPT_MAXLEN);
return this.snake;
}
/**
* update the position of each point of the snake
*
* @return true if the snake has changed, otherwise false.
*/
private boolean step() {
boolean changed=false;
Point p = new Point(0,0);
// compute length of original snake (used by method: f_uniformity)
this.snakelength = getsnakelength();
// compute the new snake
List<Point> newsnake = new ArrayList<Point>(snake.size());
// for each point of the previous snake
for(int i=0;i<snake.size();i++) {
Point prev = snake.get((i+snake.size()-1)%snake.size());
Point cur = snake.get(i);
Point next = snake.get((i+1)%snake.size());
// compute all energies
for(int dy=-1;dy<=1;dy++) {
for(int dx=-1;dx<=1;dx++) {
p.setLocation(cur.x+dx, cur.y+dy);
e_uniformity[1+dx][1+dy] = f_uniformity(prev,next,p);
e_curvature[1+dx][1+dy] = f_curvature(prev,p,next);
e_flow[1+dx][1+dy] = f_gflow(cur,p);
e_inertia[1+dx][1+dy] = f_inertia(cur,p);
}
}
// normalize energies
normalize(e_uniformity);
normalize(e_curvature);
normalize(e_flow);
normalize(e_inertia);
// find the point with the minimum sum of energies
double emin = Double.MAX_VALUE, e=0;
int x=0,y=0;
for(int dy=-1;dy<=1;dy++) {
for(int dx=-1;dx<=1;dx++) {
e = 0;
e+= alpha * e_uniformity[1+dx][1+dy]; // internal energy
e+= beta * e_curvature[1+dx][1+dy]; // internal energy
e+= gamma * e_flow[1+dx][1+dy]; // external energy
e+= delta * e_inertia[1+dx][1+dy]; // external energy
if (e<emin) { emin=e; x=cur.x+dx; y=cur.y+dy; }
}
}
// boundary check
if (x<1) x=1;
if (x>=(this.width-1)) x=this.width-2;
if (y<1) y=1;
if (y>=(this.height-1)) y=this.height-2;
// compute the returned value
if (x!=cur.x || y!=cur.y) changed=true;
// create the point in the new snake
newsnake.add(new Point(x,y));
}
// new snake becomes current
this.snake=newsnake;
return changed;
}
// normalize energy matrix
private void normalize(double[][] array3x3) {
double sum=0;
for(int i=0;i<3;i++)
for(int j=0;j<3;j++)
sum+=Math.abs(array3x3[i][j]);
if (sum==0) return;
for(int i=0;i<3;i++)
for(int j=0;j<3;j++)
array3x3[i][j]/=sum;
}
private double getsnakelength() {
// total length of snake
double length=0;
for(int i=0;i<snake.size();i++) {
Point cur = snake.get(i);
Point next = snake.get((i+1)%snake.size());
length+=distance2D(cur, next);
}
return length;
}
private double distance2D(Point A, Point B) {
int ux = A.x-B.x;
int uy = A.y-B.y;
double un = ux*ux+uy*uy;
return Math.sqrt(un);
}
Les méthodes des fonctions d'energie:
Code java :
private double f_uniformity(Point prev, Point next, Point p) {
// length of previous segment
double un = distance2D(prev, p);
// mesure of uniformity
double avg = snakelength/snake.size();
double dun = Math.abs(un-avg);
// elasticity energy
return dun*dun;
}
private double f_curvature(Point prev, Point p, Point next) {
int ux = p.x-prev.x;
int uy = p.y-prev.y;
double un = Math.sqrt(ux*ux+uy*uy);
int vx = p.x-next.x;
int vy = p.y-next.y;
double vn = Math.sqrt(vx*vx+vy*vy);
if (un==0 || vn==0) return 0;
double cx = (vx+ux)/(un*vn);
double cy = (vy+uy)/(un*vn);
// curvature energy
double cn = cx*cx+cy*cy;
return cn;
}
private double f_gflow(Point cur, Point p) {
// gradient flow
int dcur = this.flow[cur.x][cur.y];
int dp = this.flow[p.x][p.y];
double d = dp-dcur;
return d;
}
private double f_inertia(Point cur, Point p) {
double d = distance2D(cur, p);
double g = this.gradient[cur.x][cur.y];
double e = g*d;
return e;
}
Les méthodes du mécanisme d'auto-adaptation:
Code java :
// rebuild the snake using cubic spline interpolation
private void rebuild(int space) {
// precompute length(i) = length of the snake from start to point #i
double[] clength = new double[snake.size()+1];
clength[0]=0;
for(int i=0;i<snake.size();i++) {
Point cur = snake.get(i);
Point next = snake.get((i+1)%snake.size());
clength[i+1]=clength[i]+distance2D(cur, next);
}
// compute number of points in the new snake
double total = clength[snake.size()];
int nmb = (int)(0.5+total/space);
// build a new snake
List<Point> newsnake = new ArrayList<Point>(snake.size());
for(int i=0,j=0;j<nmb;j++) {
// current length in the new snake
double dist = (j*total)/nmb;
// find corresponding interval of points in the original snake
while(! (clength[i]<=dist && dist<clength[i+1])) i++;
// get points (P-1,P,P+1,P+2) in the original snake
Point prev = snake.get((i+snake.size()-1)%snake.size());
Point cur = snake.get(i);
Point next = snake.get((i+1)%snake.size());
Point next2 = snake.get((i+2)%snake.size());
// do cubic spline interpolation
double t = (dist-clength[i])/(clength[i+1]-clength[i]);
double t2 = t*t, t3=t2*t;
double c0 = 1*t3;
double c1 = -3*t3 +3*t2 +3*t + 1;
double c2 = 3*t3 -6*t2 + 4;
double c3 = -1*t3 +3*t2 -3*t + 1;
double x = prev.x*c3 + cur.x*c2 + next.x* c1 + next2.x*c0;
double y = prev.y*c3 + cur.y*c2 + next.y* c1 + next2.y*c0;
Point newpoint = new Point( (int)(0.5+x/6), (int)(0.5+y/6) );
// add computed point to the new snake
newsnake.add(newpoint);
}
this.snake = newsnake;
}
private void removeOverlappingPoints(int minlen) {
// for each point of the snake
for(int i=0;i<snake.size();i++) {
Point cur = snake.get(i);
// check the other points (right half)
for(int di=1+snake.size()/2;di>0;di--) {
Point end = snake.get((i+di)%snake.size());
double dist = distance2D(cur,end);
// if the two points are to close...
if ( dist>minlen ) continue;
// ... cut the "loop" part og the snake
for(int k=0;k<di;k++) snake.remove( (i+1) %snake.size() );
break;
}
}
}
private void addMissingPoints(int maxlen) {
// for each point of the snake
for(int i=0;i<snake.size();i++) {
Point prev = snake.get((i+snake.size()-1)%snake.size());
Point cur = snake.get(i);
Point next = snake.get((i+1)%snake.size());
Point next2 = snake.get((i+2)%snake.size());
// if the next point is to far then add a new point
if ( distance2D(cur,next)>maxlen ) {
// precomputed Uniform cubic B-spline for t=0.5
double c0=0.125/6.0, c1=2.875/6.0, c2=2.875/6.0, c3=0.125/6.0;
double x = prev.x*c3 + cur.x*c2 + next.x* c1 + next2.x*c0;
double y = prev.y*c3 + cur.y*c2 + next.y* c1 + next2.y*c0;
Point newpoint = new Point( (int)(0.5+x), (int)(0.5+y) );
snake.add( i+1 , newpoint ); i--;
}
}
} |
Partager