1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
   |  
// cos(x) = Somme(n=0, +oo)  (-1)^n . (x^{2n}) / (2n)! 
double calculerCos(double X,double precision)
{
     double terme_1 = 1;            // (-1)^n
     double terme_2 = 1;            // x^{2n}
     double terme_3 = 1;            // 1/(2n)! 
     double terme_final = 1;        // (-1)^n . (x^{2n}) / (2n)!
     double reponse = 1;
     long int n = 0;
 
     do
     {
        terme_1 *= (-1);
        terme_2 *= (X * X);
        /* Somme(n=0, +oo) = 1/1 + 1/(1*2) + 1/(1*2*3*4) + 1/(1*2*3*4*5*6 + ...
           on a donc T(k) = T(k- 1).1/((n + 1)(n +2)) avec n = 0 si k = 0 et n est 
           incrémenté de 2 à chaque itération
         */
        terme_3 *= 1/((double)(n + 1)*(n + 2));
        terme_final = (terme_1 * terme_2 * terme_3);
        reponse +=terme_final;
        n+= 2;
 
     }while (abs(terme_final) > precision);
 
     return reponse;
}
 
// sin(x) = Somme(n=0, +oo)  (-1)^n . (x^{2n + 1}) / (2n +1)! 
double calculerSin(double X,double precision)
{
     double terme_1 = 1;            // (-1)^n
     double terme_2 = X;            // x^{2n +1}
     double terme_3 = 1;            // 1/(2n + 1)! 
     double terme_final = 1;        // (-1)^n . (x^{2n + 1}) / (2n +1)!
     double reponse = X;
     long int n = 1;
 
     do
     {
        terme_1 *= (-1);
        terme_2 *= (X * X);
        /* Somme(n=0, +oo) = 1/1 + 1/(1*2) + 1/(1*2*3*4) + 1/(1*2*3*4*5*6 + ...
           on a donc T(k) = T(k- 1).1/((n + 1)(n +2)) avec n = 0 si k = 0 et n est 
           incrémenté de 2 à chaque itération
         */
        terme_3 *= 1/((double)(n + 1)*(n + 2));
        terme_final = (terme_1 * terme_2 * terme_3);
        reponse +=terme_final;
        n+= 2;
 
     }while (abs(terme_final) > precision);
 
     return reponse; | 
Partager