1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
| % les données de reseaux (l'entrée: (sal, BPT ), la sortie:TE
sal=[0.6186 0.6369 1.5707 1.6867 3.735 4.5285 6.4212 7.1354 1.8504 2.5375 3.469 4.0254 5.8352 5.9126 0.7981 1.001 1.7117 2.151 3.473 3.618 5.0555 5.0648 1.2813 1.9457 3.0582 3.3534 4.911 5.4038 1.1263 2.2542 5.178 0.6239 2.643 4.779 6.3231 1.2566 3.03 4.281 0.19101 2.5357 3.9086 5.9291 1.1735 3.0542 5.7635 1.253 3.467 5.3929 6.4064 1.683 3.3541 4.876 0.6887 2.6012 4.4208 6.4108];
sall=(sal-mean(sal))/std(sal);
BPT=[60 60 60 60 60 60 60 60 80 80 80 80 80 80 100 100 100 100 100 100 100 100 120 120 120 120 120 120 60 60 60 80 80 80 80 100 100 100 120 120 120 120 60 60 60 80 80 80 80 100 100 100 120 120 120 120 ];
BPTT= (BPT-mean(BPT))/std(BPT);
TE=[ 0.0710 0.0720 0.1780 0.1920 0.4400 0.5420 0.8030 0.9070 0.2410 0.3320 0.4610 0.5420 0.8160 0.8300 0.1180 0.1470 0.2510 0.3180 0.5240 0.5470 0.7890 0.7900 0.2130 0.3240 0.5160 0.5670 0.8560 0.9510 0.128 0.258 0.629 0.081 0.347 0.654 0.894 0.185 0.454 0.657 0.033 0.425 0.670 1.056 0.134 0.356 0.709 0.163 0.461 0.654 0.894 0.248 0.505 0.756 0.116 0.437 0.764 1.154];
TEE=(TE-mean(TE))/std(TE);
p=[sall;BPTT];
%division de donées
sal1=[0.6186 0.6369 1.5707 1.6867 3.735 4.5285 6.4212 7.1354 1.8504 2.5375 3.469 4.0254 5.8352 5.9126 0.7981 1.001 1.7117 2.151 3.473 3.618 5.0555 5.0648 1.2813 1.9457 3.0582 3.3534 4.911 5.4038] ;
sal1=(sal1-mean(sal))/std(sal);
BPT1=[60 60 60 60 60 60 60 60 80 80 80 80 80 80 100 100 100 100 100 100 100 100 120 120 120 120 120 120];
BPT1=(BPT1-mean(BPT))/std(BPT);
TE1=[ 0.0710 0.0720 0.1780 0.1920 0.4400 0.5420 0.8030 0.9070 0.2410 0.3320 0.4610 0.5420 0.8160 0.8300 0.1180 0.1470 0.2510 0.3180 0.5240 0.5470 0.7890 0.7900 0.2130 0.3240 0.5160 0.5670 0.8560 0.9510] ;
TE1=(TE1-mean(TE))/std(TE);
trainv.P=[sal1;BPT1] ;
trainv.T=TE1 ;
sal2=[1.1263 2.2542 5.178 0.6239 2.643 4.779 6.3231 1.2566 3.03 4.281 0.19101 2.5357 3.9086 5.9291];
sal2=(sal2-mean(sal))/std(sal);
BPT2= [60 60 60 80 80 80 80 100 100 100 120 120 120 120 ] ;
BPT2=(BPT2-mean(BPT))/std(BPT);
TE2= [ 0.128 0.258 0.629 0.081 0.347 0.654 0.894 0.185 0.454 0.657 0.033 0.425 0.670 1.056];
TE2=(TE2-mean(TE))/std(TE) ;
valv.P=[sal2;BPT2] ;
valv.T=TE2;
sal3=[ 1.1735 3.0542 5.7635 1.253 3.467 5.3929 6.4064 1.683 3.3541 4.876 0.6887 2.6012 4.4208 6.4108];
sal3=(sal3-mean(sal))/std(sal);
BPT3= [60 60 60 80 80 80 80 100 100 100 120 120 120 120] ;
BPT3=(BPT3-mean(BPT))/std(BPT);
TE3= [ 0.134 0.356 0.709 0.163 0.461 0.654 0.894 0.248 0.505 0.756 0.116 0.437 0.764 1.154];
TE3=(TE3-mean(TE))/std(TE) ;
testv.P=[sal3;BPT3];
testv.T=TE3 ;
%apprentissage de reseaux
net.trainParam.show = 2;
pr=minmax(p);
net=newff(pr,[4 1],{'tansig' 'purelin'});
%net.trainParam.showWindow = false;
%net.trainParam.epochs = 1;
%[net,tr]=train( net,trainv.P,trainv.T,[],[],valv,testv);
%affichage de poids et de biais de couche d'entrée
net.IW{1,1}
net.b{1}
%affichage de poids et de biais de couche de sortie
net.LW{2}
net.b{2}
sim(net,[0;2]) |
Partager