IdentifiantMot de passe
Loading...
Mot de passe oublié ?Je m'inscris ! (gratuit)
Navigation

Inscrivez-vous gratuitement
pour pouvoir participer, suivre les réponses en temps réel, voter pour les messages, poser vos propres questions et recevoir la newsletter

MATLAB Discussion :

Besoin d'un fichier code source


Sujet :

MATLAB

  1. #1
    Nouveau Candidat au Club
    Inscrit en
    Octobre 2006
    Messages
    1
    Détails du profil
    Informations forums :
    Inscription : Octobre 2006
    Messages : 1
    Points : 1
    Points
    1
    Par défaut Besoin d'un fichier code source
    Bonjour,
    j'ai besoin du fichier pearsrnd.m se trouvant dans le chemin :
    "C:\MATLAB6p1\toolbox\stats" si vous disposez de la version matlab R2006a ou la version R2006b.
    Ce serait très gentil de m'envoyer ce fichier - je peux vous communiquer mon mail par MP.

  2. #2
    Expert confirmé
    Avatar de tug83
    Homme Profil pro
    MATLAB Geek !
    Inscrit en
    Juin 2006
    Messages
    1 781
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Âge : 44
    Localisation : France, Alpes de Haute Provence (Provence Alpes Côte d'Azur)

    Informations professionnelles :
    Activité : MATLAB Geek !
    Secteur : High Tech - Éditeur de logiciels

    Informations forums :
    Inscription : Juin 2006
    Messages : 1 781
    Points : 4 039
    Points
    4 039
    Par défaut
    Code : Sélectionner tout - Visualiser dans une fenêtre à part
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    231
    232
    233
    234
    235
    236
    237
    238
    239
    240
    241
    242
    243
    244
    245
    246
    247
    248
    249
    250
    251
    252
    253
    254
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
    265
    266
    267
    268
    269
    function [r,type,coefs] = pearsrnd(mu,sigma,skew,kurt,varargin)
    %PEARSRND Random arrays from the Pearson system of distributions.
    %   R = PEARSRND(MU,SIGMA,SKEW,KURT,M,N) returns an M-by-N matrix of random
    %   numbers drawn from the distribution in the Pearson system with mean MU,
    %   standard deviation SIGMA, skewness SKEW, and kurtosis KURT.  MU, SIGMA,
    %   SKEW, and KURT must be scalars.
    %
    %   Note: Because R is a random sample, its sample moments, especially the
    %   skewness and kurtosis, will typically differ somewhat from the specified
    %   distribution moments.
    %
    %   Some combinations of moments are not valid for any random variable, and in
    %   particular, the kurtosis must be greater than the square of the skewness
    %   plus 1.  The kurtosis of the normal distribution is defined to be 3.
    %
    %   R = PEARSRND(MU,SIGMA,SKEW,KURT) returns a scalar value.
    %   R = PEARSRND(MU,SIGMA,SKEW,KURT,M,N,...) or
    %   R = PEARSRND(MU,SIGMA,SKEW,KURT,[M,N,...]) returns an M-by-N-by-... array.
    %
    %   [R,TYPE] = PEARSRND(...) returns the type of the specified distribution
    %   within the Pearson system.  Type is a scalar integer from 0 to 7.  Set M
    %   and N to zero to identify the distribution type without generating any
    %   random values.
    %
    %   The seven distribution types in the Pearson system correspond to the
    %   following distributions:
    %
    %      Type 0: Normal distribution
    %      Type 1: Four-parameter beta
    %      Type 2: Symmetric four-parameter beta
    %      Type 3: Three-parameter gamma
    %      Type 4: Not related to any standard distribution.  Density proportional
    %              to (1+((x-a)/b)^2)^(-c) * exp(-d*arctan((x-a)/b)).
    %      Type 5: Inverse gamma location-scale
    %      Type 6: F location-scale
    %      Type 7: Student's t location-scale
    %
    %   [R,TYPE,C] = PEARSRND(...) returns the coefficients of the quadratic
    %   polynomial that defines the distribution via the differential equation
    %   d(log(p(x)))/dx = (a + x) / (c(0) + c(1)*x + c(2)*x^2).
    %
    %   Examples
    %      % Generate random values from the standard normal distribution
    %      r = pearsrnd(0,1,0,3,100,1);  % equivalent to randn(100,1)
    %
    %      % Determine the distribution type
    %      [r,type] = pearsrnd(0,1,1,4,0,0);  % returns [] for r
    %
    %   See also RANDOM, JOHNSRND.
     
    %   PEARSRND uses transformations of various standard random variates for types
    %   0-III and types V-VII, and a rejection algorithm for type IV.
     
    %   References:
    %      [1] Johnson, N.L., S. Kotz, and N. Balakrishnan (1994) Continuous
    %          Univariate Distributions, Volume 1,  Wiley-Interscience.
    %      [2] Devroye, L. (1986) Non-Uniform Random Variate Generation, 
    %          Springer-Verlag.
     
    %   Copyright 2005 The MathWorks, Inc. 
    %   $Revision: 1.1.6.2 $  $Date: 2005/12/12 23:33:54 $
     
    if nargin < 4
        error('stats:pearsrnd:TooFewInputs','Requires at least four input arguments.');
    elseif ~(isscalar(mu) && isscalar(sigma) && isscalar(skew) && isscalar(kurt))
        error('stats:pearsrnd:NonScalarInputs','MU, SIGMA, SKEW, and KURT must be scalars.');
    end
     
    [err, sizeOut] = statsizechk(4,mu,sigma,skew,kurt,varargin{:});
    if err > 0
        error('stats:pearsrnd:InputSizeMismatch','Size information is inconsistent.');
    end
     
    outClass = superiorfloat(mu,sigma,skew,kurt);
     
    beta1 = skew.^2;
    beta2 = kurt;
     
    % Return NaN for illegal parameter values.
    if (sigma < 0) || (beta2 <= beta1 + 1)
        r = NaN(sizeOut,outClass);
        type = NaN;
        coefs = NaN(1,3,outClass);
        return
    end
     
    % Classify the distribution and find the roots of c0 + c1*x + c2*x^2
    c0 = (4*beta2 - 3*beta1); % ./ (10*beta2 - 12*beta1 - 18);
    c1 = skew .* (beta2 + 3); % ./ (10*beta2 - 12*beta1 - 18);
    c2 = (2*beta2 - 3*beta1 - 6); % ./ (10*beta2 - 12*beta1 - 18);
    if c1 == 0 % symmetric dist'ns
        if beta2 == 3
            type = 0;
        else
            if beta2 < 3
                type = 2;
            elseif beta2 > 3
                type = 7;
            end
            a1 = -sqrt(abs(c0./c2));
            a2 = -a1; % symmetric roots
        end
    elseif c2 == 0 % kurt = 3 + 1.5*skew^2 
        type = 3;
        a1 = -c0 ./ c1; % single root
    else
        kappa = c1.^2 ./ (4*c0.*c2);
        if kappa < 0
            type = 1;
        elseif kappa < 1-eps
            type = 4;
        elseif kappa <= 1+eps
            type = 5;
        else
            type = 6;
        end
        % Solve the quadratic for general roots a1 and a2 and sort by their real parts
        tmp = -(c1 + sign(c1).*sqrt(c1.^2 - 4*c0.*c2)) ./ 2;
        a1 = tmp ./ c2;
        a2 = c0 ./ tmp;
        if (real(a1) > real(a2)), tmp = a1; a1 = a2; a2 = tmp; end
    end
     
    denom = (10*beta2 - 12*beta1 - 18);
    if abs(denom) > sqrt(realmin)
        c0 = c0 ./ denom;
        c1 = c1 ./ denom;
        c2 = c2 ./ denom;
        coefs = [c0 c1 c2];
    else
        type = 1; % this should have happened already anyway
        % beta2 = 1.8 + 1.2*beta1, and c0, c1, and c2 -> Inf.  But a1 and a2 are
        % still finite.
        coefs = Inf(1,3,outClass);
    end
     
    % generate standard (zero mean, unit variance) values
    switch type
    case 0
        % normal: standard support (-Inf,Inf)
        m1 = zeros(outClass);
        m2 = ones(outClass);
        r = normrnd(m1,m2,sizeOut);
    case 1
        % four-parameter beta: standard support (a1,a2)
        if abs(denom) > sqrt(realmin)
            m1 = (c1 + a1) ./ (c2 .* (a2 - a1));
            m2 = -(c1 + a2) ./ (c2 .* (a2 - a1));
        else
            % c1 and c2 -> Inf, but c1/c2 has finite limit
            m1 = c1 ./ (c2 .* (a2 - a1));
            m2 = -c1 ./ (c2 .* (a2 - a1));
        end
        r = a1 + (a2 - a1) .* betarnd(m1+1,m2+1,sizeOut);
    case 2
        % symmetric four-parameter beta: standard support (-a1,a1)
        m = (c1 + a1) ./ (c2 .* 2*abs(a1));
        r = a1 + 2*abs(a1) .* betarnd(m+1,m+1,sizeOut);
    case 3
        % three-parameter gamma: standard support (a1,Inf) or (-Inf,a1)
        m = (c0./c1 - c1) ./ c1;
        r = c1 .* gamrnd(m+1,1,sizeOut) + a1;
    case 4
        % Pearson IV is not a transformation of a standard distribution: density
        % proportional to (1+((x-lambda)/a)^2)^(-m) * exp(-nu*arctan((x-lambda)/a)),
        % standard support (-Inf,Inf)
        m = 1 ./ (2*c2);
        nu = 2.*c1.*(1 - m) ./ sqrt((4.*c0.*c2 - c1.^2));
        b = 2*(m-1);
        a = sqrt(b.^2 .* (b-1) ./ (b.^2 + nu.^2)); % gives unit variance
        lambda = a.*nu ./ b; % gives zero mean
        r = pearson4rnd(m,nu,a,lambda,sizeOut);
    case 5
        % inverse gamma location-scale: standard support (-C1,Inf) or (-Inf,-C1)
        C1 = c1 ./ (2*c2);
        r = -((c1 - C1) ./ c2) ./ gamrnd(1./c2 - 1,1,sizeOut) - C1;
    case 6
        % F location-scale: standard support (a2,Inf) or (-Inf,a1)
        m1 = (a1 + c1) ./ (c2.*(a2 - a1));
        m2 = -(a2 + c1) ./ (c2.*(a2 - a1));
        % a1 and a2 have the same sign, and they've been sorted so a1 < a2
        if a2 < 0
            nu1 = 2*(m2 + 1);
            nu2 = -2*(m1 + m2 + 1);
            r = a2 + (a2 - a1) .* (nu1./nu2) .* frnd(nu1,nu2,sizeOut);
        else % 0 < a1
            nu1 = 2*(m1 + 1);
            nu2 = -2*(m1 + m2 + 1);
            r = a1 + (a1 - a2) .* (nu1./nu2) .* frnd(nu1,nu2,sizeOut);
        end
    case 7
        % t location-scale: standard support (-Inf,Inf)
        nu = 1./c2 - 1;
        r = sqrt(c0 ./ (1-c2)) .* trnd(nu,sizeOut);
    end
     
    % scale and shift
    r = r.*sigma + mu;
     
     
    function r = pearson4rnd(m,nu,a,lambda,sizeOut)
    % PEARSON4RND Generate Pearson type 4 random variates.
    %
    %   Based on the exponential rejection method for log-concave densities in
    %   Devroye, Section VII.2.  Valid only when m>1, which is if called by PEARSRND.
    %
    %   References:
    %      [1] Devroye, L. (1986) Non-Uniform Random Variate Generation, 
    %          Springer-Verlag.  Also available in PDF format on-line at
    %          <a href="http://cgm.cs.mcgill.ca/~luc/rnbookindex.html" target="_blank">http://cgm.cs.mcgill.ca/~luc/rnbookindex.html</a>.
    %      [2] Heinrich, J. (2004) "A Guide to the Pearson Type IV Distribution",
    %          CDF/MEMO/STATISTICS/PUBLIC/6820, available on-line at 
    %          <a href="http://www-cdf.fnal.gov/publications/cdf6820_pearson4.pdf" target="_blank">http://www-cdf.fnal.gov/publications...0_pearson4.pdf</a>.
     
    K = (1./HypGeo(m,nu/2)).*exp(gammaln(m) - gammaln(m-.5)) ./ (sqrt(pi)*a);
     
    % Generate y = arctan(x) with density g(y) = K*cos(y)^(2m-1)*exp(-nu*y)
    b = 2*(m-1);
    M = atan(-nu./b); % mode of y = arctan(x)
    cosM = a ./ sqrt(b-1);
    loggM = b.*log(cosM) - nu.*M; % log(g(mode)) + log(K)
    invgM = exp(-loggM) ./ K; % 1/g(mode)
     
    outClass = superiorfloat(m,nu,a,lambda);
    r = zeros(sizeOut,outClass);
    j = 1:numel(r);
    while length(j) > 0
        U = 4*rand(size(j)); % dist'd Unif([0,4])
        S = (U>2); % use this to get a random +1/-1
        U(S) = U(S) - 2; % now dist'd Unif([0,2])
        negEstar = log(max(U,1)-(U>1)); % zero for U<=1, dist'd Exp(1) for U>1
        X = min(U,1) - negEstar; % U or 1+Estar
        Z = log(rand(size(j))) + negEstar; % -E or -E-Estar
        X = M + (2*S-1).*X.*invgM;
        k = (abs(X) < pi/2) & (Z <= b.*log(abs(cos(X))) - nu.*X - loggM);
        r(j(k)) = X(k);
        j(k) = [];
    end
     
    % Transform, scale, and shift to standard Pearson type IV
    r = a.*tan(r) + lambda;
     
     
    function F = HypGeo(x,y)
    % HYPGEO A special case of the hypergeometric function.
    %
    % Returns F(-iy,iy,x,1) = abs(gamma(x)/gamma(x+iy))^2, where F is the complex
    % hypergeometric function.  Based on methods described in Heinrich, J. (2004) "A
    % Guide to the Pearson Type IV Distribution", CDF/MEMO/STATISTICS/PUBLIC/6820.
     
    % For small x, compute (1+(y/x)^2)*...*(1+(y/(x+n))^2) which scales F(-iy,iy,x,1)
    % to F(-iy,iy,x+n,1), which we can compute quickly if x+n is large.
    if x < 100
        xstep = x:1:99;
        r = prod(1 + (y./xstep).^2);
        x = xstep(end) + 1;
    else
        r = 1;
    end
     
    % Compute F(-iy,iy,x+n,1), then multiply by r to get F(-iy,iy,x,1)
    s = ones(class(y)); p = ones(class(y)); f = zeros(class(y));
    while p > eps(s)
        p = p .* (y.^2 + f.^2) ./ (x.*(f+1));
        x = x + 1;
        f = f + 1;
        s = s + p;
    end
    F = r.*s;
    MATLAB 8.2 (R2013b)

    le blog des MATLAB geeks

Discussions similaires

  1. [MySQL] Besoin d'un petit code source
    Par glodybiss4 dans le forum PHP & Base de données
    Réponses: 3
    Dernier message: 21/02/2012, 12h01
  2. extension du fichier code source
    Par HAJER83 dans le forum VB 6 et antérieur
    Réponses: 2
    Dernier message: 23/05/2010, 15h54
  3. Code source pour rechercher des fichiers Mp3 sur le disque
    Par specta61 dans le forum VB 6 et antérieur
    Réponses: 3
    Dernier message: 28/02/2007, 19h49
  4. Récupérer le code source d'un fichier créé dynamiquement
    Par jeanvincent dans le forum Langage
    Réponses: 2
    Dernier message: 06/12/2006, 15h09

Partager

Partager
  • Envoyer la discussion sur Viadeo
  • Envoyer la discussion sur Twitter
  • Envoyer la discussion sur Google
  • Envoyer la discussion sur Facebook
  • Envoyer la discussion sur Digg
  • Envoyer la discussion sur Delicious
  • Envoyer la discussion sur MySpace
  • Envoyer la discussion sur Yahoo