IdentifiantMot de passe
Loading...
Mot de passe oublié ?Je m'inscris ! (gratuit)
Navigation

Inscrivez-vous gratuitement
pour pouvoir participer, suivre les réponses en temps réel, voter pour les messages, poser vos propres questions et recevoir la newsletter

C++ Discussion :

problème de Linkage ? opencl


Sujet :

C++

  1. #1
    Membre confirmé
    Homme Profil pro
    Étudiant
    Inscrit en
    Mars 2014
    Messages
    126
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : France

    Informations professionnelles :
    Activité : Étudiant

    Informations forums :
    Inscription : Mars 2014
    Messages : 126
    Par défaut problème de Linkage ? opencl
    Voilà désolé de vous déranger mais je m'arrache les cheveux sur un problème, et comme je fais du OpenCL pour la première fois je ne sais pas si cela a un rapport ou non.

    J'ai les erreurs suivantes données par mon compilateur :

    g++ -Wall -std=c++11 -lOpenCL main.cpp YoUtil.cpp libIDAAOS.o -o main
    /tmp/ccYhKM4y.o: In function `main':
    main.cpp.text+0xb97): undefined reference to `computeDistances(cl::CommandQueue&, cl:rogram&, int, int, _cl_mem*&, int, _cl_mem*&, _cl_mem*&)'
    main.cpp.text+0xc42): undefined reference to `computeWeights(cl::CommandQueue&, cl:rogram&, int, int, _cl_mem*&, _cl_mem*&, double)'
    main.cpp.text+0xcf9): undefined reference to `computeInterpolation(cl::CommandQueue&, cl:rogram&, int, int, int, _cl_mem*, _cl_mem*, _cl_mem*&, _cl_mem*)'
    collect2: error: ld returned 1 exit status

    Voici les fichiers qui sont à mon avis concernés par les erreurs mais n'hésitez-pas à demander les autres si j'ai tort :

    main.cpp

    Code : Sélectionner tout - Visualiser dans une fenêtre à part
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    #include <iostream>
    #include <fstream>
    #include <cmath>
    #include <cstdlib>
    #include "IDALib.h"
    #include "YoUtil.hpp"
    #include <string>
    #include <CL/cl.hpp>
     
    using namespace std;
     
    static void g1(const int NPOINTS, const int DIM, const double(*bounds)[2], const int nDiv, double *grids, const int whichDIM, double *X, int &where) {
    	if (whichDIM == DIM) {
    		// store the grid point & return
    		for (int dim = 0; dim < DIM; ++dim) writeGrid(DIM, NPOINTS, where, dim, grids, X[dim]);
    		// for (int dim = 0; dim < DIM; ++dim) cout << "*" << X[dim] << "* "; cout << endl;
    		++where;
    		return;
    	}
    	const double inc = (bounds[whichDIM][1] - bounds[whichDIM][0]) / (nDiv - 1);
    	X[whichDIM] = bounds[whichDIM][0];
    	for (int i = 0; i < nDiv; ++i) {
    		g1(NPOINTS, DIM, bounds, nDiv, grids, whichDIM + 1, X, where);
    		X[whichDIM] += inc;
    	}
    }
     
    // x1, x2, x3, ... y1, y2, y3, ... z1, z1, z3, ...
    void computeGridCoordinates(const int DIM, const double(*bounds)[2], const int nDiv, double *grids) {
    	const int NPOINTS = pow(nDiv, DIM);
    	double *X = new double[DIM];
    	int where = 0;
    	g1(NPOINTS, DIM, bounds, nDiv, grids, 0, X, where);
    	delete[]X;
    }
     
    int main(int argc, char **argv) {
    	if (argc < 3) {
    		cerr << argv[0] << " [input filename] [output filename]" << endl;
    		return 255;
    	}
    	ifstream inp(argv[1]);
    	if (!inp.good()) {
    		cerr << "\nError opening file: " << argv[1] << endl;
    		return 254;
    	}
    	int DIM, nPoints, nValues, nDivisions;
    	inp >> DIM >> nPoints >> nValues >> nDivisions;
     
    	// Allocate memory for storing all necessary data
    	double *knownCoords = new double[DIM * nPoints];
    	double *knownValues = new double[nPoints * nValues];
    	double (*bounds)[2] = new double[DIM][2];					// size of DIMS * 2
    	const int nGrids = (int)pow(nDivisions, DIM);				// # of grid points
    	double *gridCoords = new double[(size_t) pow(nDivisions, DIM) * DIM];
    	double *distances = new double[nGrids * nPoints];
    	double *weightSum = new double[nGrids];
    	double *gridValues = new double[nGrids * nValues];
     
    	// read data from the specified file and store data into appropriate data structures using write & writeAttribute functions
    	for (int pt = 0; pt < nPoints; ++pt) {
    		for (int dim = 0; dim < DIM; ++dim) {
    			double tmp;
    			inp >> tmp;
    			write(DIM, nPoints, pt, dim, knownCoords, tmp);
    		}
    		for (int attr = 0; attr < nValues; ++attr) {
    			double tmp;
    			inp >> tmp;
    			writeAttribute(nValues, nPoints, pt, attr, knownValues, tmp);
    		}
    	}
    	inp.close();
    	// show data
    	// for (int i = 0; i < nPoints * DIM; ++i) cout << knownCoords[i] << " "; cout << endl;
    	// for (int i = 0; i < nPoints * nValues; ++i) cout << knownValues[i] << " "; cout << endl;
     
    	// int where = 0;
    	// find bounds of known data points
     
    	// create context
    	std::vector<cl::CommandQueue> cmdQueues = std::vector<cl::CommandQueue>();
    	cl::Context *context = getContext(CL_DEVICE_TYPE_GPU, cmdQueues, 0, true);  
     
    	// create buffers, 0 is the offset, TRUE means blocking
    	cl_mem knownCoords_b = clCreateBuffer((*context)(), CL_MEM_READ_WRITE, sizeof(knownCoords), NULL, 0);
    	clEnqueueWriteBuffer(cmdQueues[0](),knownCoords_b, CL_TRUE, 0, sizeof(knownCoords_b), knownCoords_b, 0, NULL, NULL);
     
    	cl_mem knownValues_b = clCreateBuffer((*context)(), CL_MEM_READ_WRITE, sizeof(knownValues), NULL, 0);
    	clEnqueueWriteBuffer(cmdQueues[0](), knownValues_b, CL_TRUE, 0, sizeof(knownValues_b), knownValues_b, 0, NULL, NULL);
     
    	cl_mem gridCoords_b = clCreateBuffer((*context)(), CL_MEM_READ_WRITE, sizeof(gridCoords), NULL, 0);
    	clEnqueueWriteBuffer(cmdQueues[0](), gridCoords_b, CL_TRUE, 0, sizeof(gridCoords_b), gridCoords_b, 0, NULL, NULL);
     
    	cl_mem distances_b = clCreateBuffer((*context)(), CL_MEM_READ_WRITE, sizeof(distances), NULL, 0);
    	clEnqueueWriteBuffer(cmdQueues[0](), distances_b, CL_TRUE, 0, sizeof(distances_b), distances, 0, NULL, NULL);
     
    	cl_mem weightSum_b = clCreateBuffer((*context)(), CL_MEM_READ_WRITE, sizeof(weightSum), NULL, 0);
    	clEnqueueWriteBuffer(cmdQueues[0](), weightSum_b, CL_TRUE, 0, sizeof(weightSum_b), weightSum, 0, NULL, NULL);
     
    	cl_mem gridValues_b = clCreateBuffer((*context)(), CL_MEM_READ_WRITE, sizeof(gridValues), NULL, 0);
    	clEnqueueWriteBuffer(cmdQueues[0](), gridValues_b, CL_TRUE, 0, sizeof(gridValues_b), gridValues_b, 0, NULL, NULL);
     
    	// parse the source code and build the program
    	std::string source_code = readSourceCode("shepard_extrapolation_kernels.cl");
    	cl::Program *program = compile(*context, source_code); 
     
    	stopWatch timer;
    	double t1(0.0);
    	timer.start();
    	computeBounds(DIM, nPoints, knownCoords, bounds);
    	timer.stop();
    	t1 += timer.elapsedTime();
    	// for (int i = 0; i < DIM; ++i) cout << bounds[i][0] << ":" << bounds[i][1] << endl; cout << endl;
     
    	// create grid points in unknownCoords
    	computeGridCoordinates(DIM, bounds, nDivisions, gridCoords);
     
    	// for (int i = 0; i < nGrids*DIM; ++i) cout << gridCoords[i] << " "; cout << endl;
     
    	// step 3. compute distances between all grids points and all known data points
    	double t2(0.0);
    	timer.start();
    	computeDistances(cmdQueues[0], *program, DIM, nPoints, knownCoords_b, nGrids, gridCoords_b, distances_b);
    	timer.stop();
    	t2 += timer.elapsedTime();
    	// for (int i = 0; i < nPoints*nGrids; ++i) cout << distances[i] << " "; cout << endl;
     
    	// step 4. turn the distance array into weight array, and compute the total weight
    	double t3(0.0);
    	timer.start();
    	computeWeights(cmdQueues[0], *program, nGrids, nPoints, distances_b, weightSum_b);
    	timer.stop();
    	t3 += timer.elapsedTime();
    	// for (int i = 0; i < nPoints*nGrids; ++i) cout << distances[i] << " "; cout << endl;
     
    	// step 5 & 6. compute sum (weights * known Values) / totalWeight
    	double t4(0.0);
    	timer.start();
    	computeInterpolation(cmdQueues[0], *program, nValues, nGrids, nPoints, distances_b, weightSum_b, knownValues_b, gridValues_b);
    	timer.stop();
    	t4 += timer.elapsedTime();
     
    	// read the results back to the host, CL_TRUE means blocking, 0 is the offset, we read from gridValues_b into gridValues, 
    	// 0 events, no events list, no event
    	clEnqueueReadBuffer(cmdQueues[0](), gridValues_b, CL_TRUE, 0, sizeof(gridValues_b), gridValues, 0, NULL, NULL);
    /*
    	std::cout << "computeBounds : " << t1 << std::endl;
    	std::cout << "computeDistances : " << t2 << std::endl;
    	std::cout << "computeWeights : " << t3 << std::endl;
    	std::cout << "computeInterpolation : " << t4 << std::endl;
    */
    	std::cout << t1 << " " << t2 << " " << t3 << " " << t4 << " " << std::endl;
    	// All calculations are finished.  Write grid data to the specified output file.
    	ofstream outp(argv[2]);
    	// Output points
    	if (outp.good()) {
    		/*
    		// This part writes scattered data points
    		for (int i = 0; i < nPoints; ++i) {
    			for (int dim = 0; dim < DIM; ++dim) {
    				outp << read(DIM, nPoints, i, dim, knownCoords) << " ";
    			}
    			for (int attr = 0; attr < nValues; ++attr) {
    				outp << readAttribute(nValues, nPoints, i, attr, knownValues);
    			}
    			outp << knownValues[i] << "\n";
    		}
    		outp << "\n\n";
    		*/
     
    		for (int i = 0; i < nGrids; ++i) {
    			for (int dim = 0; dim < DIM; ++dim) {
    				outp << readGrid(DIM, nGrids, i, dim, gridCoords) << " ";
    			}
    			for (int attr = 0; attr < nValues; ++attr) {
    				outp << readGridAttribute(nValues, nGrids, i, attr, gridValues) << " ";
    			}
    			outp << "\n";
    		}
     
    		outp.close();
    	}
     
    	delete[] bounds;
    	delete[] knownCoords;
    	delete[] gridCoords;
    	delete[] weightSum;
    	delete[] distances;
    	delete[] knownValues;
    	delete[] gridValues;
     
    	return 0;
    }
    libIDAAOS.cpp

    Code : Sélectionner tout - Visualiser dans une fenêtre à part
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    231
    232
    233
    234
    235
    236
    237
    238
    239
    240
    241
    242
    243
    244
    245
    246
    247
    248
    249
    250
    251
    252
    253
    254
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
    265
    266
    267
    268
    269
    270
    271
    272
    273
    274
    275
    276
    277
    278
    279
    280
    281
    282
    283
    284
    285
    286
    287
    288
    289
    290
    291
    292
    293
    294
    295
    296
    297
    298
    299
    300
    301
    302
    303
    304
    305
    306
    307
    308
    309
    310
    311
    312
    313
    314
    315
    316
    317
    318
    319
    320
    321
    322
    323
    324
    325
    326
    327
    328
    329
    #include "IDALib.h"
    #include <iostream>
    #include <utility> // pair
    #include <cmath> // sqrt
    #include <cstdlib> // EXIT_FAILURE
    #include <limits>
    #include <cl.hpp>
     
    /* Array of structs format */
     
    double read(const int DIM, const int nPoints, const int whichPt, const int whichDim, const double *coords){
        /* Read from known coordinates 
     
        DIM - Dimensionality of coordinates
        nPoints - Number of known data points
        whichPt - which known data point is to be read
        whichDim - which dimension of coordinates is to be read
        coords - array containing all coordinates of known data points
     
        return the coordinate of the DIM dimension of the whichPt point
     
        */
        if(whichPt > nPoints - 1) {
            std::cout << "The point that you want to read does not exist" << std::endl;
            exit(EXIT_FAILURE);
        }
     
        return coords[whichPt * DIM + whichDim];
    }
     
     
    void  write(const int DIM, const int nPoints, const int whichPt, const int whichDim, double *coords, const double val){
        /* Write to known coordinates
     
        DIM - Dimensionality of coordinates
        nPoints - Number of known data points
        whichPt - which known data point is to be read
        whichDim - which dimension of coordinates is to be read
        coords - array containing all coordinates of known data points
     
        */
        if(whichPt > nPoints - 1) {
            std::cout << "The point that you want to write does not exist" << std::endl;
        }
     
        coords[whichPt * DIM + whichDim] = val;
    }
     
     
    double readGrid(const int DIM, const int nGridPoints, const int whichGridPt, const int whichDim, const double *gridCoords){
        /* Read grid coordinates
     
        DIM - Dimensionality of coordinates
        nGridPoints - Number of points in the grid
        whichGridPt - which point in the gread is to be read
        whichDim - which dimension of coordinates is to be read
        gridCoords - array containing all coordinates of grid points
     
        return the coordinate of the DIM dimension of the whichGridPt
     
        */
        if(whichGridPt > nGridPoints - 1) {
            std::cout << "The point that you want to read does not exist in the grid" << std::endl;
            exit(EXIT_FAILURE);
        }
     
        return gridCoords[whichGridPt * DIM + whichDim];
    }
     
    void  writeGrid(const int DIM, const int nGridPoints, const int whichGridPt, const int whichDim, double *gridCoords, const double val){
        /* Write grid coordinates
     
        DIM - Dimensionality of coordinates
        nGridPoints - Number of points in the grid
        whichGridPt - which point in the gread is to be read
        whichDim - which dimension of coordinates is to be read
        gridCoords - array containing all coordinates of grid points
     
        */
        if(whichGridPt > nGridPoints - 1) {
            std::cout << "The point that you want to write does not exist in the grid" << std::endl;
        }
     
        gridCoords[whichGridPt * DIM + whichDim] = val;
     
    }
     
    double readAttribute(const int noAttr, const int nPoints, const int whichPt, const int whichAttr, const double *values){
        /* Read known values
     
        noAttr - number of attributes at each point
        nPoints - Number of known data points
        whichPt - which known data point is to be read
        whichAttr - which attribute is to be read
        values - array containing all the values 
     
        return the value of whichAttr of whichPt 
     
        */
        if(whichPt > nPoints - 1){
            std::cout << "The point that you are trying to read does not exist" << std::endl;
            exit(EXIT_FAILURE);
        }
     
        return values[whichPt * noAttr + whichAttr];
    }
     
    void writeAttribute(const int noAttr, const int nPoints, const int whichPt, const int whichAttr, double *values, const double val){
        /* Write known values
     
        noAttr - number of attributes at each point
        nPoints - Number of known data points
        whichPt - which known data point is to be read
        whichAttr - which attribute is to be read
        values - array containing all the values 
     
        */
        if(whichPt > nPoints - 1){
            std::cout << "The point that you are trying to write does not exist" << std::endl;
            exit(EXIT_FAILURE);
        }
     
        values[whichPt * noAttr + whichAttr] = val;
    }
     
    double readGridAttribute(const int noAttr, const int nPoints, const int whichPt, const int whichAttr, const double *values){
        /* Read a grid attribute
     
        noAttr - number of attributes at each point
        nPoints - Number of known data points
        whichPt - which known data point is to be read
        whichAttr - which attribute is to be read
        values - array containing all the values
     
        return the value of whichAttr of whichPt 
     
        */
     
        if(whichPt > nPoints - 1){
            std::cout << "The point that you are trying to read does not exist" << std::endl;
            exit(EXIT_FAILURE);
        }
     
        return values[whichPt * noAttr + whichAttr];
     
    }
     
     
    void writeGridAttribute(const int noAttr, const int nPoints, const int whichPt, const int whichAttr, double *values, const double val){
    /* Write known values
     
        noAttr - number of attributes at each point
        nPoints - Number of known data points
        whichPt - which known data point is to be read
        whichAttr - which attribute is to be read
        values - array containing all the values 
     
        */
        if(whichPt > nPoints - 1){
            std::cout << "The point that you are trying to write does not exist" << std::endl;
            exit(EXIT_FAILURE);
        }
     
        values[whichPt * noAttr + whichAttr] = val;
    }
     
    void computeBounds(const int DIM, const int nPoints, const double *knownCoords, double(*bounds)[2]){
        /* Find extremes in each dimension of a given set of scatter points
        
        DIM - Dimensionality of coordinates    
        nPoints - Number of known data points
        knowCoords - array containing all coordinates of known data points
        bounds - 2D array to store the extremes, each row corresponds to a dimension
     
        */
     
        for(int i = 0; i < DIM; i++){
            double min = std::numeric_limits<double>::max();
            double max = std::numeric_limits<double>::min();
            for(int j = 0; j < DIM * nPoints; j+= DIM){
                if(knownCoords[i + j] < min)
                    min = knownCoords[i + j];
     
                if(knownCoords[i + j] > max)
                    max= knownCoords[i + j];
            }
            bounds[i][0] = min;
            bounds[i][1] = max;
        }
    }
     
    void computeDistances(const int DIM, const int nPoints, const double *knownCoords, const int nGrids, const double *gridCoords, double *distances){
        /* Compute distances between all known points and all grid points.
     
        DIM - Dimensionality of coordinates    
        nPoints - Number of known data points
        nGrids - number of points in the grid
        knowCoords - array containing all coordinates of known data points
        gridCoords - containing all grid points
        distances - array containing all the distances all data points and all grid points
     
        */
     
        for(int k = 0; k < nGrids; k++){
            for(int i = 0; i < nPoints; i++){
                double distance(0.0);
                for(int j = 0; j < DIM; j++){
                    distance += pow(knownCoords[i * DIM + j] - gridCoords[k * DIM + j], 2.0);
                }
                distances[k * nPoints + i] = sqrt(distance);
            }
        }
     
    }
     
    void computeWeights(const int nGrids, const int nPoints, double *distances, double *weightSum, const double p){
        /* Compute weights from known points to each grid point
        
        nPoints - Number of known data points
        nGrids - number of points in the grid
        distances - array containing all the distances all data points and all grid points
        weightSum - array containing the weight sums of each grid point
        p - parameter to compute sums
     
        */
     
        for(int i = 0; i < nGrids; i++){
            double weight(0.0);
            for(int j = 0; j < nPoints; j++){
                double this_weight(0.0);
                if(distances[i * nPoints + j] == 0){
                    weight = 0.0;
                    break;
                }
                this_weight = 1.0 / pow(distances[i * nPoints + j], p);
                weight += this_weight;
                distances[i * nPoints + j] = this_weight;
            }
            weightSum[i] = weight;
        }
    }
     
     
    void computeInterpolation(const int nValues, const int nGrids, const int nPoints, const double *distances, const double *weightSum, 
        const double *knownValues, double *gridValues){
     
        /* Compute unknown values on grid points using weights and known values
     
        nValues - number of attributes
        nGrids - number of points in the grid
        nPoints - number of known points
        distances - distances between each pair (known_point, grid_point)
        weightSum - Sum of the weights for each grid point
     
        */
     
        for(int i = 0; i < nGrids; i++){
            for(int j = 0; j < nValues; j++){
                double weigh_value_sum(0.0);
                bool to_change(true);
                for(int k = 0; k < nPoints; k++){
                    weigh_value_sum += distances[i * nPoints + k] * knownValues[nValues * k + j];
                    if(distances[i * nPoints + k] == 0){
                        writeGridAttribute(nValues, nGrids, i, j, gridValues, knownValues[nValues * k + j]);
                        to_change = false;
                        break;
                    }
                }
                if(to_change) writeGridAttribute(nValues, nGrids, i, j, gridValues, weigh_value_sum / weightSum[i]);
            }
        }
    }
     
    // prepare kernel arguments, work-groups config and launch kernels - No data movements
    void computeDistances(cl::CommandQueue &cmdQueue, cl::Program &prog, const int DIM, const int nPoints, 
        cl::Buffer &knownCoords, const int nGrids, cl::Buffer &gridCoords, cl::Buffer &distances){
     
        cl_Kernel kernel = clCreateKernel(prog(), "compute_distances", NULL);
        kernel->setArg(0, DIM);
        kernel->setArg(1, nPoints);
        kernel->setArg(2, knownCoords);
        kernel->setArg(3, nGrids);
        kernel->setArg(4, gridCoords);
        kernel->setArg(5, distances);
        size_t group_size = 4;
        cl::NDRange local(group_size, group_size, group_size);
        cl::NDRange global(DIM*nPoints*nGrids + pow(group_size, 3.0) - 1 / pow(group_size, 3.0));
        //clEnqueueNDRangeKernel(cmdQueue, kernel, 3, NULL, global, local, 0, NULL, NULL);
        kernel.bind(cmdQueue, 0, global, local);
    }
     
    void computeWeights(cl::CommandQueue &cmdQueue, cl::Program &prog, const int nGrids, const int nPoints,
        cl::Buffer &distances, cl::Buffer &weightSum, const MY_DATA_TYPE p = 2.0){
     
        cl_Kernel kernel = clCreateKernel(prog(), "compute_weights", NULL);
        clSetKernelArg(kernel, 0, sizeof(cl_int), nGrids);
        clSetKernelArg(kernel, 1, sizeof(cl_int), nPoints);
        clSetKernelArg(kernel, 2, sizeof(cl_mem), distances);
        clSetKernelArg(kernel, 3, sizeof(cl_mem), weightSum;
        clSetKernelArg(kernel, 4, sizeof(cl_double), p);
        size_t group_size = 8;
        cl::NDRange local(group_size, group_size);
        cl::NDRange global(nGrids*nPoints + pow(group_size, 2.0) - 1 / pow(group_size, 2.0));
        //clEnqueueNDRangeKernel(cmdQueue, kernel, 2, NULL, global, local, 0, NULL, NULL);
        kernel.bind(cmdQueue, 0, global, local);
    }
     
    void computeInterpolation(cl::CommandQueue &cmdQueue, cl::Program &prog, const int nValues, const int nGrids,
        const int nPoints, cl::Buffer &distances, cl::Buffer &weightSum, cl::Buffer &knownValues, cl::Buffer &gridValues){
     
        cl_Kernel kernel = clCreateKernel(prog(), "compute_interpolation", NULL);
        kernel->setArg(0, nValues);
        kernel->setArg(1, nGrids);
        kernel->setArg(2, nPoints);
        kernel->setArg(3, distances);
        kernel->setArg(4, weightSum);
        kernel->setArg(5, knownValues);
        kernel->setArg(6, gridValues);
        size_t group_size = 4;
        cl::NDRange local(group_size, group_size, group_size);
        cl::NDRange global(nValues*nGrids*nPoints + pow(group_size, 3.0) - 1 / pow(group_size, 3.0));
        //clEnqueueNDRangeKernel(cmdQueue, kernel, 3, NULL, global, local, 0, NULL, NULL);
        // 0 is the offset
        kernel.bind(cmdQueue, 0, global, local);
    }
     
    // page 111 pour enqueue un kernel
    // conversion page 137
    // max and co 177
    Je remercie tous ceux qui auront eu la gentillesse de lire jusqu'ici et ceux qui pourront éventuellement m'aider car je suis perdu.

    Immo

  2. #2
    Membre éclairé
    Homme Profil pro
    Ingénieur développement logiciels
    Inscrit en
    Avril 2010
    Messages
    517
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : France, Gironde (Aquitaine)

    Informations professionnelles :
    Activité : Ingénieur développement logiciels
    Secteur : Santé

    Informations forums :
    Inscription : Avril 2010
    Messages : 517
    Par défaut
    Salut,

    Est-ce que tu as un fichier d'en-tête pour les fonctions définies dans libIDAAOS.cpp? Si ce n'est pas le cas, crées en un et rajoutes les squelettes des fonctions dedans et inclue ce fichier dans main.cpp.

  3. #3
    Membre confirmé
    Homme Profil pro
    Étudiant
    Inscrit en
    Mars 2014
    Messages
    126
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : France

    Informations professionnelles :
    Activité : Étudiant

    Informations forums :
    Inscription : Mars 2014
    Messages : 126
    Par défaut
    Oui pardon le voici (merci de ton aide !)

    Code : Sélectionner tout - Visualiser dans une fenêtre à part
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    #ifndef IDALIB
    #define IDALIB
     
    #include <CL/cl.hpp>
    #define __CL_ENABLE_EXCEPTIONS
     
     
    typedef double MY_DATA_TYPE;
     
    // read/write to known coordinates
    MY_DATA_TYPE read(const int DIM, const int nPoints, const int whichPt, const int whichDim, const MY_DATA_TYPE *coords);
    void  write(const int DIM, const int nPoints, const int whichPt, const int whichDim, MY_DATA_TYPE *coords, const MY_DATA_TYPE val);
     
    // read/write to grid coordinates
    MY_DATA_TYPE readGrid(const int DIM, const int nGridPoints, const int whichGridPt, const int whichDim, const MY_DATA_TYPE *gridCoords);
    void  writeGrid(const int DIM, const int nGridPoints, const int whichGridPt, const int whichDim, MY_DATA_TYPE *gridCoords, const MY_DATA_TYPE val);
     
    // read/write to known values
    MY_DATA_TYPE readAttribute(const int noAttr, const int nPoints, const int whichPt, const int whichAttr, const MY_DATA_TYPE *values);
    void   writeAttribute(const int noAttr, const int nPoints, const int whichPt, const int whichAttr, MY_DATA_TYPE *values, const MY_DATA_TYPE val);
     
    // read/write to grid values
    MY_DATA_TYPE readGridAttribute(const int noAttr, const int nPoints, const int whichPt, const int whichAttr, const MY_DATA_TYPE *values);
    void   writeGridAttribute(const int noAttr, const int nPoints, const int whichPt, const int whichAttr, MY_DATA_TYPE *values, const MY_DATA_TYPE val);
     
    void computeBounds(const int DIM, const int nPoints, const MY_DATA_TYPE *knownCoords, MY_DATA_TYPE(*bounds)[2]);
    void computeDistances(const int DIM, const int nPoints, const MY_DATA_TYPE *knownCoords, const int nGrids, const MY_DATA_TYPE *gridCoords, MY_DATA_TYPE *distances);
    void computeWeights(const int nGrids, const int nPoints, MY_DATA_TYPE *distances, MY_DATA_TYPE *weightSum, const MY_DATA_TYPE p = 2.0);
    void computeInterpolation(const int nValues, const int nGrids, const int nPoints, const MY_DATA_TYPE *distances, const MY_DATA_TYPE *weightSum, const MY_DATA_TYPE *knownValues, MY_DATA_TYPE *gridValues);
     
    // For OpenCL version
    void computeDistances(cl::CommandQueue &cmdQueue, cl::Program &prog, const int DIM, const int nPoints, cl_mem &knownCoords, const int nGrids, cl_mem &gridCoords, cl_mem &distances);
    void computeWeights(cl::CommandQueue &cmdQueue, cl::Program &prog, const int nGrids, const int nPoints, cl_mem &distances, cl_mem &weightSum, const MY_DATA_TYPE p = 2.0);
    void computeInterpolation(cl::CommandQueue &cmdQueue, cl::Program &prog, const int nValues, const int nGrids, const int nPoints, cl_mem distances, cl_mem weightSum, cl_mem &knownValues, cl_mem gridValues);
     
    #endif

  4. #4
    Membre éclairé
    Homme Profil pro
    Ingénieur développement logiciels
    Inscrit en
    Avril 2010
    Messages
    517
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : France, Gironde (Aquitaine)

    Informations professionnelles :
    Activité : Ingénieur développement logiciels
    Secteur : Santé

    Informations forums :
    Inscription : Avril 2010
    Messages : 517
    Par défaut
    Je n'ai pas testé mais je suis quasi sûr que c'est à cause des const int ou const double que tu demande et que tu passes un int classique (double). Je pense que tu voulais utiliser une référence constante (même si elle n'a pas vraiment lieu d'être ici).

    Essaie avec ces squelettes de fonctions:
    Code : Sélectionner tout - Visualiser dans une fenêtre à part
    1
    2
    3
    4
    // For OpenCL version
    void computeDistances(cl::CommandQueue &cmdQueue, cl::Program &prog, int DIM, int nPoints, cl_mem &knownCoords,  int nGrids, cl_mem &gridCoords, cl_mem &distances);
    void computeWeights(cl::CommandQueue &cmdQueue, cl::Program &prog,  int nGrids, int nPoints, cl_mem &distances, cl_mem &weightSum,  MY_DATA_TYPE p = 2.0);
    void computeInterpolation(cl::CommandQueue &cmdQueue, cl::Program &prog,  int nValues, int nGrids, int nPoints, cl_mem distances, cl_mem weightSum, cl_mem &knownValues, cl_mem gridValues);
    Pour arriver à ce raisonnement, pense à bien regarder le message d'erreur du compilo et compare les squelettes avec ce que le compilo attend et ce que ton code peu fournir. Et on remarque rapidement que le compilo attendait des int, double, etc et non pas des const int, const double, etc...

    Bon courage pour la suite!

  5. #5
    Membre confirmé
    Homme Profil pro
    Étudiant
    Inscrit en
    Mars 2014
    Messages
    126
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : France

    Informations professionnelles :
    Activité : Étudiant

    Informations forums :
    Inscription : Mars 2014
    Messages : 126
    Par défaut
    Hey Darkman merci du coup de main malheureusement j'ai opéré les changements que tu as fait (aussi bien dans IDALib.h que dans libIDAAOS.cpp) et ça n'a rien changé du tout. As-tu une autre idée ?

  6. #6
    Membre éclairé
    Homme Profil pro
    Ingénieur développement logiciels
    Inscrit en
    Avril 2010
    Messages
    517
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : France, Gironde (Aquitaine)

    Informations professionnelles :
    Activité : Ingénieur développement logiciels
    Secteur : Santé

    Informations forums :
    Inscription : Avril 2010
    Messages : 517
    Par défaut
    J'ai essayé de compiler ton code mais il manque le fichier YoUtil.hpp.

    Tu peux l'ajouter stp?

  7. #7
    Membre confirmé
    Homme Profil pro
    Étudiant
    Inscrit en
    Mars 2014
    Messages
    126
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : France

    Informations professionnelles :
    Activité : Étudiant

    Informations forums :
    Inscription : Mars 2014
    Messages : 126
    Par défaut
    Bien entendu, merci de te donner autant de mal.

    Code : Sélectionner tout - Visualiser dans une fenêtre à part
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    #include "YoUtil.hpp"
    #include <iostream>			// for I/O
    #include <fstream>			// for file I/O
     
    using namespace std;
     
    cl::Context *getContext(cl_device_type type, vector<cl::CommandQueue> &cmdQueues, cl_command_queue_properties props, bool verbose) {
    	vector< cl::Platform > platforms;
    	cl::Platform::get(&platforms);
     
    	for (cl::Platform &platform : platforms) {
    		vector<cl::Device> devices;
    		platform.getDevices(type, &devices);
    		if (devices.size() == 0) continue;
     
    		cl::Context *context = new cl::Context(devices);
     
    		// create command queues in the context
    		cmdQueues.clear();
    		for (auto& device : context->getInfo<CL_CONTEXT_DEVICES>()) {
    			cmdQueues.push_back(cl::CommandQueue(*context, device, props));
    		}
     
    		if (verbose) {
    			cout << "\n\tThere are " << context->getInfo<CL_CONTEXT_NUM_DEVICES>() << " device(s) in the defined context.";
    			cout << "\n\t# of Command queues: " << cmdQueues.size();
    		}
    		return context;
    	}
     
    	if (verbose) cerr << "\nCannot find any platform for given device type: " << type;
    	return nullptr;
    }
     
    string readSourceCode(const char *filename) {
    	ifstream inp(filename);
    	if (!inp) {
    		cerr << "\nError opening file: " << filename << endl;
    		return "";
    	}
     
    	string kernel((istreambuf_iterator<char>(inp)), istreambuf_iterator<char>());
     
    	inp.close();
    	return kernel;
    }
     
    cl::Program *compile(cl::Context &context, const string &source, const char *options) {
    	cl::Program *prog = new cl::Program(context, source);
     
    	try {
    		// prog->build("-cl-std=CL1.2 -w -cl-kernel-arg-info");
    		prog->build(options);
    	}
    	catch (cl::Error &e) {
    		cerr << "\nFile: " << __FILE__ << ", line: " << __LINE__ << e.what();
    		cerr << "\nError no: " << e.err() << endl;
    		for (auto& device : context.getInfo<CL_CONTEXT_DEVICES>()) {
    			cout << "\n=== " << device.getInfo<CL_DEVICE_NAME>() << " ===";
    			cout << "\nBuild log: " << prog->getBuildInfo<CL_PROGRAM_BUILD_LOG>(device);
    			cout << "\nBuild options used:" << prog->getBuildInfo<CL_PROGRAM_BUILD_OPTIONS>(device);
    		}
    		return nullptr;
    	}
     
    	/*
    	// See Table 5.13 of OpenCL 1.2 specification for information that can be queried to program objects
    	cout << "\n\t# devices associated with the program: " << prog->getInfo<CL_PROGRAM_NUM_DEVICES>();
    	cout << "\n\t# Kernels defined: " << prog->getInfo<CL_PROGRAM_NUM_KERNELS>();
    	cout << "\n\tProgram kernel names: " << prog->getInfo<CL_PROGRAM_KERNEL_NAMES>();
    	cout << "\n\tProg sizes: ";  for (auto s : prog->getInfo<CL_PROGRAM_BINARY_SIZES>()) cout << s << ";";
    	*/
     
    	return prog;
    }
    Le header

    Code : Sélectionner tout - Visualiser dans une fenêtre à part
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    #ifndef YO_OPENCL_UTIL_HEADER
    #define YO_OPENCL_UTIL_HEADER
     
    #define __CL_ENABLE_EXCEPTIONS
    #include <CL/cl.hpp>
     
    #include <string>			// for C++ string
    #include <vector>			// for vector container
    #include <chrono>
    using namespace std;
     
    // utility function get a context by specifying device type
    // command queue properties CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE -> not enable by default
    // CL_QUEUE_PROFILING_ENABLE -> to record performance
    cl::Context *getContext(cl_device_type type, vector<cl::CommandQueue> &cmdQueues, cl_command_queue_properties props = 0, bool verbose = false);
     
    // utility function to load OpenCL source code and store it into a string
    std::string readSourceCode(const char *filename);
     
    // utility function compile the CL source code into Programs
    cl::Program *compile(cl::Context &, const string &source, const char *option = "-cl-std=CL1.2 -w -cl-kernel-arg-info");
     
    // utility class for stopWatch wrapper using c++11 chrono
    class stopWatch {
    	chrono::high_resolution_clock::time_point t_start, t_stop;
    public:
    	void start() {
    		t_start = chrono::high_resolution_clock::now();
    	}
    	void stop() {
    		t_stop = chrono::high_resolution_clock::now();
    	}
    	double elapsedTime() {
    		chrono::duration<double> d = t_stop - t_start;
    		return d.count();
    	}
    	static double resolution() {
    		auto tmp = chrono::high_resolution_clock::period();
    		return (double)tmp.num / tmp.den;
    	}
    };
     
    /*
     
    Device Type:                                   CL_DEVICE_TYPE_GPU
    Device ID:                                     4098
    Board name:                                    AMD Radeon HD 7900 Series
    Device Topology:                               PCI[ B#1, D#0, F#0 ]
    Max compute units:                             32
    Max work items dimensions:                     3
    Max work items[0]:                           256
    Max work items[1]:                           256
    Max work items[2]:                           256
    Max work group size:                           256
     
    Preferred vector width char:                   4
    Preferred vector width short:                  2
    Preferred vector width int:                    1
    Preferred vector width long:                   1
    Preferred vector width float:                  1
    Preferred vector width double:                 1
    Native vector width char:                      4
    Native vector width short:                     2
    Native vector width int:                       1
    Native vector width long:                      1
    Native vector width float:                     1
    Native vector width double:                    1
    Max clock frequency:                           1000Mhz
    Address bits:                                  32
    Max memory allocation:                         1073741824
    Image support:                                 Yes
    Max number of images read arguments:           128
    Max number of images write arguments:          8
    Max image 2D width:                            16384
    Max image 2D height:                           16384
    Max image 3D width:                            2048
    Max image 3D height:                           2048
    Max image 3D depth:                            2048
    Max samplers within kernel:                    16
    Max size of kernel argument:                   1024
    Alignment (bits) of base address:              2048
    Minimum alignment (bytes) for any datatype:    128
    Single precision floating point capability
    Denorms:                                     No
    Quiet NaNs:                                  Yes
    Round to nearest even:                       Yes
    Round to zero:                               Yes
    Round to +ve and infinity:                   Yes
    IEEE754-2008 fused multiply-add:             Yes
    Cache type:                                    Read/Write
    Cache line size:                               64
    Cache size:                                    16384
    Global memory size:                            3107979264
    Constant buffer size:                          65536
    Max number of constant args:                   8
    Local memory type:                             Scratchpad
    Local memory size:                             32768
    Kernel Preferred work group size multiple:     64
    Error correction support:                      0
    Unified memory for Host and Device:            0
    Profiling timer resolution:                    1
    Device endianess:                              Little
    Available:                                     Yes
    Compiler available:                            Yes
    Execution capabilities:
    Execute OpenCL kernels:                      Yes
    Execute native function:                     No
    Queue properties:
    Out-of-Order:                                No
    Profiling :                                  Yes
    Platform ID:                                   0x00007f3a8eed7500
    Name:                                          Tahiti
    Vendor:                                        Advanced Micro Devices, Inc.
    Device OpenCL C version:                       OpenCL C 1.2
    Driver version:                                1411.4 (VM)
    Profile:                                       FULL_PROFILE
    Version:                                       OpenCL 1.2 AMD-APP (1411.4)
    Extensions:                                    cl_khr_fp64 cl_amd_fp64 cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_int64_base_atomics cl_khr_int64_extended_atomics cl_khr_3d_image_writes cl_khr_byte_addressable_store cl_khr_gl_sharing cl_ext_atomic_counters_32 cl_amd_device_attribute_query cl_amd_vec3 cl_amd_printf cl_amd_media_ops cl_amd_media_ops2 cl_amd_popcnt cl_khr_image2d_from_buffer cl_khr_spir
     
     
    */
     
     
    #endif
    je tiens à préciser que ce code c'est mon prof qui nous l'a donné pour nous simplifier la vie, je suis donc limité dans les modifications que je peux y apporter, néanmoins si tu vois quelque chose dedans qui si il était différent résoudrait mon problème en 2 sec je veux bien que tu m'en parles

  8. #8
    Membre Expert
    Avatar de prgasp77
    Homme Profil pro
    Ingénieur en systèmes embarqués
    Inscrit en
    Juin 2004
    Messages
    1 306
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Âge : 38
    Localisation : France, Eure (Haute Normandie)

    Informations professionnelles :
    Activité : Ingénieur en systèmes embarqués
    Secteur : High Tech - Électronique et micro-électronique

    Informations forums :
    Inscription : Juin 2004
    Messages : 1 306
    Par défaut
    La def : computeDistances(cl::CommandQueue&, cl::Program&, int, int, cl_mem&, int, cl_mem&, cl_mem&);
    L'appel : computeDistances(cl::CommandQueue&, cl::Program&, int, int, _cl_mem*&, int, _cl_mem*&, _cl_mem*&);

    int et const int sont la même chose pour le type d'une fonction, le const ne s'appliquant qu'à la variable locale accueillant la copie de l'argument.

  9. #9
    Membre Expert
    Homme Profil pro
    Étudiant
    Inscrit en
    Juin 2012
    Messages
    1 711
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : France

    Informations professionnelles :
    Activité : Étudiant

    Informations forums :
    Inscription : Juin 2012
    Messages : 1 711
    Par défaut
    Citation Envoyé par ImmoTPA Voir le message
    Code : Sélectionner tout - Visualiser dans une fenêtre à part
    1
    2
    3
    4
    5
    6
    7
    8
    void computeDistances(const int DIM, const int nPoints, const MY_DATA_TYPE *knownCoords, const int nGrids, const MY_DATA_TYPE *gridCoords, MY_DATA_TYPE *distances);
    void computeWeights(const int nGrids, const int nPoints, MY_DATA_TYPE *distances, MY_DATA_TYPE *weightSum, const MY_DATA_TYPE p = 2.0);
    void computeInterpolation(const int nValues, const int nGrids, const int nPoints, const MY_DATA_TYPE *distances, const MY_DATA_TYPE *weightSum, const MY_DATA_TYPE *knownValues, MY_DATA_TYPE *gridValues);
     
    // For OpenCL version
    void computeDistances(cl::CommandQueue &cmdQueue, cl::Program &prog, const int DIM, const int nPoints, cl_mem &knownCoords, const int nGrids, cl_mem &gridCoords, cl_mem &distances);
    void computeWeights(cl::CommandQueue &cmdQueue, cl::Program &prog, const int nGrids, const int nPoints, cl_mem &distances, cl_mem &weightSum, const MY_DATA_TYPE p = 2.0);
    void computeInterpolation(cl::CommandQueue &cmdQueue, cl::Program &prog, const int nValues, const int nGrids, const int nPoints, cl_mem distances, cl_mem weightSum, cl_mem &knownValues, cl_mem gridValues);
    Hello,

    Tu mélange interface C et Wrapper C++ un peu partout dans ton code, c'est assez sale. Utilise l'un ou l'autre mais pas les deux.

    Tes fonctions "For OpenCL version" ne sont implémentées nulle part, et pourquoi mélanger des cl::Machin avec des cl_mem ? Ce sont des buffers, utilise donc cl::Buffer (ou remplace les cl::Machin par la version C).

    Code : Sélectionner tout - Visualiser dans une fenêtre à part
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    // prepare kernel arguments, work-groups config and launch kernels - No data movements
    void computeDistances(cl::CommandQueue &cmdQueue, cl::Program &prog, const int DIM, const int nPoints, 
        cl::Buffer &knownCoords, const int nGrids, cl::Buffer &gridCoords, cl::Buffer &distances){
     
        cl_Kernel kernel = clCreateKernel(prog(), "compute_distances", NULL);
        kernel->setArg(0, DIM);
        kernel->setArg(1, nPoints);
        kernel->setArg(2, knownCoords);
        kernel->setArg(3, nGrids);
        kernel->setArg(4, gridCoords);
        kernel->setArg(5, distances);
        size_t group_size = 4;
        cl::NDRange local(group_size, group_size, group_size);
        cl::NDRange global(DIM*nPoints*nGrids + pow(group_size, 3.0) - 1 / pow(group_size, 3.0));
        //clEnqueueNDRangeKernel(cmdQueue, kernel, 3, NULL, global, local, 0, NULL, NULL);
        kernel.bind(cmdQueue, 0, global, local);
    }
    Ce coup ci tu utilises cl::Buffer et plus cl_mem.

    A un moment il va falloir savoir ce que tu utilise.

    Si tu utilise les type C++, corrige la définition de la fonction et l'appel :
    Code : Sélectionner tout - Visualiser dans une fenêtre à part
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    // For OpenCL version
    void computeDistances(cl::CommandQueue &cmdQueue, cl::Program &prog, const int DIM, const int nPoints, cl::Buffer &knownCoords, const int nGrids, cl::Buffer &gridCoords, cl::Buffer &distances);
     
    // main - Ce coup ci tu utilises l'interface C..
    cl_mem knownCoords_b = clCreateBuffer((*context)(), CL_MEM_READ_WRITE, sizeof(knownCoords), NULL, 0);
    clEnqueueWriteBuffer(cmdQueues[0](),knownCoords_b, CL_TRUE, 0, sizeof(knownCoords_b), knownCoords_b, 0, NULL, NULL);
     
    cl_mem gridCoords_b = clCreateBuffer((*context)(), CL_MEM_READ_WRITE, sizeof(gridCoords), NULL, 0);
    clEnqueueWriteBuffer(cmdQueues[0](), gridCoords_b, CL_TRUE, 0, sizeof(gridCoords_b), gridCoords_b, 0, NULL, NULL);
     
    cl_mem distances_b = clCreateBuffer((*context)(), CL_MEM_READ_WRITE, sizeof(distances), NULL, 0);
    clEnqueueWriteBuffer(cmdQueues[0](), distances_b, CL_TRUE, 0, sizeof(distances_b), distances, 0, NULL, NULL);
     
    computeDistances(cmdQueues[0], *program, DIM, nPoints, knownCoords_b, nGrids, gridCoords_b, distances_b);
     
    // à remplacer par
    cl::Buffer knownCoords_b(...);
    cl::Buffer gridCoords_b(...);
    cl::Buffer distances_b(...);
     
    computeDistances(cmdQueues[0], *program, DIM, nPoints, knownCoords_b, nGrids, gridCoords_b, distances_b);

Discussions similaires

  1. Code::Blocks sous Linux problème de linkage
    Par Invité dans le forum Code::Blocks
    Réponses: 3
    Dernier message: 22/03/2006, 16h54
  2. [Code::Blocks] Problème de linkage: "msvcrt.lib"
    Par skhay dans le forum Code::Blocks
    Réponses: 8
    Dernier message: 14/03/2006, 19h39
  3. Plusieurs fichiers => Problème de Linkage
    Par loic911 dans le forum C++
    Réponses: 6
    Dernier message: 01/03/2006, 00h11
  4. Problème de linkage avec la librairie DevIl
    Par Drannor dans le forum DevIL
    Réponses: 1
    Dernier message: 18/01/2006, 23h05
  5. Problème de linkage
    Par lvdnono dans le forum Windows
    Réponses: 4
    Dernier message: 15/06/2004, 12h32

Partager

Partager
  • Envoyer la discussion sur Viadeo
  • Envoyer la discussion sur Twitter
  • Envoyer la discussion sur Google
  • Envoyer la discussion sur Facebook
  • Envoyer la discussion sur Digg
  • Envoyer la discussion sur Delicious
  • Envoyer la discussion sur MySpace
  • Envoyer la discussion sur Yahoo