1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
| /*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* SelfOrganizingMap.java
* Copyright (C) 2000-2010 University of Waikato, Hamilton, New Zealand
*
*/
package weka.clusterers;
import java.util.Enumeration;
import java.util.Vector;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.DenseInstance;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.core.EuclideanDistance;
/**
<!-- globalinfo-start -->
* A Clusterer that implements Kohonen's Self-Organizing Map algorithm for
* unsupervised clustering. <br/>
* See T. Kohonen, Self-Organization and Associative Memory, 3rd Edition, Springer, 1989
* <p/>
<!-- globalinfo-end -->
*
<!-- options-start -->
* Valid options are: <p/>
*
* <pre> -L < initial learning rate>
* The initial learning rate for the training algorithm.
* (Value should be greater than 0.01 and less or equal to 1, Default = 1).</pre>
*
* <pre> -O <number of epochs in ordering phase>
* Number of epochs in ordering phase.
* (Value should be greater than or equal to 2000, Default = 2000).</pre>
*
* <pre> -C <number of epochs in convergence phase>
* Number of epochs to train through.
* (Value should be greater than or equal to 1000, Default = 1000).</pre>
*
* <pre> -H <height of lattice>
* The height of lattice.
* (Value should be > 0, Default = 1).</pre>
*
* <pre> -W <width of lattice>
* The width of lattice.
* (Value should be > 0, Default = 1).</pre>
*
* <pre> -I
* Normalizing the attributes will NOT be done.
* (Set this to not normalize the attributes).</pre>
*
* <pre> -S
* Statistics will NOT be calculated after training.
* (Set this to not calculate statistics).</pre>
*
<!-- options-end -->
*
* @author John Salatas (jsalatas at gmail.com)
* @version $Revision: 4 $
*/
public class SelfOrganizingMap extends AbstractClusterer
implements OptionHandler {
/** for serialization */
static final long serialVersionUID = -3028490959617832916L;
/** the distance function used. */
private EuclideanDistance m_euclideanDistance = new EuclideanDistance();
/** The width of lattice */
private int m_width;
/** The height of lattice */
private int m_height;
/** The number of epochs in convergence phase */
private int m_convergenceEpochs;
/** The number of epochs in ordering phase */
private int m_orderingEpochs;
/** The initial learning rate for the network */
private double m_learningRate;
/** The training instances. */
private Instances m_instances;
/** The weights for each unit in the lattice. */
private Instances m_clusters;
// It is used in EuclideanDistance.closestPoint
private int[] m_clusterList;
/** This flag states that the user wants the input values normalized. */
private boolean m_normalizeAttributes;
/** The maximum value for all the attributes. */
private double[] m_attributeMax;
/** The minimum value for all the attributes. */
private double[] m_attributeMin;
/** This flag states that the user wants to calculate statistics after training. */
private boolean m_calcStats;
/** holds the training instances to clusters assignments */
private Instances[] m_clusterInstances;
/** holds the cluster statistics */
private double[][][] m_clusterStats;
public static final int INPUT_COUNT=4;
public static final int SAMPLE_COUNT=100;
/**
* @return The width of lattice.
*/
public int getWidth() {
return m_width;
}
/**
* Sets the width of lattice.
* @param width The width of lattice.
*/
public void setWidth(int width) {
if (width > 0) {
this.m_width = width;
}
}
/**
* @return The height of lattice.
*/
public int getHeight() {
return m_height;
}
/**
* Sets the height of lattice.
* Must be greater than 0.
* @param height The height.
*/
public void setHeight(int height) {
if (height > 0) {
this.m_height = height;
}
}
/**
* @return The number of epochs in convergence phase.
*/
public int getConvergenceEpochs() {
return m_convergenceEpochs;
}
/**
* Set the number of epochs in convergence phase.
* Must be greater than or equal to 1000.
* @param n The number of epochs.
*/
public void setConvergenceEpochs(int n) {
if (n >= 1000) {
m_convergenceEpochs = n;
}
}
/**
* @return The number of epochs in ordering phase.
*/
public int getOrderingEpochs() {
return m_orderingEpochs;
}
/**
* Set the number of epochs in ordering phase.
* Must be greater than or equal to 2000.
* @param n The number of epochs.
*/
public void setOrderingEpochs(int n) {
if (n >= 2000) {
m_orderingEpochs = n;
}
}
/**
* @return The initial learning rate for the nodes.
*/
public double getLearningRate() {
return m_learningRate;
}
/**
* The initial learning rate can be set using this command.
* Must be greater than 0 and no more than 1.
* @param l The initial learning rate.
*/
public void setLearningRate(double l) {
if (l > 0.01 && l <= 1) {
m_learningRate = l;
}
}
/**
* @return The flag for normalizing attributes.
*/
public boolean getNormalizeAttributes() {
return m_normalizeAttributes;
}
/**
* @param a True if the attributes should be normalized (even nominal
* attributes will get normalized here) (range goes between -1 - 1).
*/
public void setNormalizeAttributes(boolean a) {
m_normalizeAttributes = a;
}
/**
* @return The flag for calculating statistics after training.
*/
public boolean getCalcStats() {
return m_calcStats;
}
/**
*
* @param c True if statistics should be calculated.
*/
public void setCalcStats(boolean c) {
this.m_calcStats = c;
}
/**
* @return a string to describe the height option.
*/
public String heightTipText() {
return "The height of lattice.";
}
/**
* @return a string to describe the caclulate statistics option.
*/
public String calcStatsTipText() {
return "This should calculate statistics for each cluster after training.";
}
/**
* @return a string to describe the width option.
*/
public String widthTipText() {
return "The width of lattice.";
}
/**
* @return a string to describe the learning rate option.
*/
public String learningRateTipText() {
return "The initial amount the weights are updated.";
}
/**
* @return a string to describe the number of epochs in convergence option.
*/
public String convergenceEpochsTipText() {
return "The number of epochs in convergence phase.";
}
/**
* @return a string to describe the number of epochs in ordering phase option.
*/
public String orderingEpochsTipText() {
return "The number of epochs in ordering phase.";
}
/**
* @return a string to describe the normalize attributes option.
*/
public String normalizeAttributesTipText() {
return "This will normalize the attributes.";
}
/**
* This will return a string describing the clusterer.
* @return The string.
*/
public String globalInfo() {
return "A Clusterer that implements Kohonen's Self Organizing Map\n"
+ "algorithm for unsupervised clustering.";
}
/**
* Returns the revision string.
*
* @return the revision
*/
public String getRevision() {
return RevisionUtils.extract("$Revision: 4 $");
}
/**
* The constructor.
*/
public SelfOrganizingMap() {
m_clusters = null;
m_width = 2;
m_height = 2;
m_convergenceEpochs = 1000;
m_orderingEpochs = 2000;
m_learningRate = 1.0;
m_normalizeAttributes = true;
m_calcStats = true;
}
/**
* Returns default capabilities of the classifier.
*
* @return the capabilities of this classifier
*/
public Capabilities getCapabilities() {
Capabilities result = super.getCapabilities();
result.disableAll();
result.enable(Capability.NO_CLASS);
// attributes
result.enable(Capability.NUMERIC_ATTRIBUTES);
result.enable(Capability.NOMINAL_ATTRIBUTES);
result.enable(Capability.MISSING_VALUES);
return result;
}
/**
* Parses a given list of options. <p/>
*
<!-- options-start -->
* Valid options are: <p/>
*
* <pre> -L <initial learning rate>
* The initial learning rate for the training algorithm.
* (Value should be greater than 0.01 and less or equal to 1, Default = 1).</pre>
*
* <pre> -O <number of epochs in ordering phase>
* Number of epochs in ordering phase.
* (Value should be greater than or equal to 2000, Default = 2000).</pre>
*
* <pre> -C <number of epochs in convergence phase>
* Number of epochs in convergence phase.
* (Value should be greater than or equal to 1000, Default = 1000).</pre>
*
* <pre> -I
* Normalizing the attributes will NOT be done.
* (Set this to not normalize the attributes).</pre>
*
* <pre> -H <height of lattice>
* The height of lattice.
* (Value should be > 0, Default = 2).</pre>
*
* <pre> -W <width of lattice>
* The width of lattice.
* (Value should be > 0, Default = 2).</pre>
*
* <pre> -S
* Statistics will NOT be calculated after training.
* (Set this to not calculate statistics).</pre>
*
<!-- options-end -->
*
* @param options the list of options as an array of strings
* @throws Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
//the defaults can be found here!!!!
String learningString = Utils.getOption('L', options);
if (learningString.length() != 0) {
setLearningRate((new Double(learningString)).doubleValue());
} else {
setLearningRate(1);
}
String orderingEpochsString = Utils.getOption('O', options);
if (orderingEpochsString.length() != 0) {
setOrderingEpochs(Integer.parseInt(orderingEpochsString));
} else {
setOrderingEpochs(2000);
}
String convergenceEpochsString = Utils.getOption('C', options);
if (convergenceEpochsString.length() != 0) {
setConvergenceEpochs(Integer.parseInt(convergenceEpochsString));
} else {
setConvergenceEpochs(1000);
}
String heightString = Utils.getOption('H', options);
if (heightString.length() != 0) {
setHeight(Integer.parseInt(heightString));
} else {
setHeight(2);
}
String widthString = Utils.getOption('W', options);
if (widthString.length() != 0) {
setWidth(Integer.parseInt(widthString));
} else {
setWidth(2);
}
if (Utils.getFlag('I', options)) {
setNormalizeAttributes(false);
} else {
setNormalizeAttributes(true);
}
if (Utils.getFlag('S', options)) {
setCalcStats(false);
} else {
setCalcStats(true);
}
Utils.checkForRemainingOptions(options);
}
/**
* Gets the current settings of NeuralNet.
*
* @return an array of strings suitable for passing to setOptions()
*/
public String[] getOptions() {
String[] options = new String[12];
int current = 0;
options[current++] = "-L";
options[current++] = "" + getLearningRate();
options[current++] = "-O";
options[current++] = "" + getOrderingEpochs();
options[current++] = "-C";
options[current++] = "" + getConvergenceEpochs();
options[current++] = "-H";
options[current++] = "" + getHeight();
options[current++] = "-W";
options[current++] = "" + getWidth();
if (!getNormalizeAttributes()) {
options[current++] = "-I";
}
if (!getCalcStats()) {
options[current++] = "-S";
}
while (current < options.length) {
options[current++] = "";
}
return options;
}
/**
* Classifies a given instance.
*
* @param i the instance to be assigned to a cluster
* @return the number of the assigned cluster as an interger
* if the class is enumerated, otherwise the predicted value
* @throws Exception if instance could not be classified
* successfully
*/
public int clusterInstance(Instance i) throws Exception {
if ((m_clusters == null) || (m_instances == null)) {
return 0;
}
Instance instance = new DenseInstance(i);
if (m_normalizeAttributes) {
instance = normalizeInstance(instance);
}
int a = m_euclideanDistance.closestPoint(instance, m_clusters, m_clusterList);
return a;
}
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector result = new Vector();
result.addElement(new Option(
"\tLearning Rate for the training algorithm.\n"
+ "\t(default 1)",
"L", 1, "-L <num>"));
result.addElement(new Option(
"\tNumber of epochs in ordering phase.\n"
+ "\t(default 2000)",
"O", 1, "-O <num>"));
result.addElement(new Option(
"\tNumber of epochs in convergence phase.\n"
+ "\t(default 1000)",
"C", 1, "-C <num>"));
result.addElement(new Option(
"\tThe height of lattice.\n"
+ "\t(default 1)",
"H", 1, "-H <num>"));
result.addElement(new Option(
"\tThe width of lattice.\n"
+ "\t(default 1)",
"W", 1, "-W <num>"));
result.addElement(new Option(
"\tNormalizing the attributes will NOT be done.\n"
+ "\t(Set this to not normalize the attributes).",
"I", 0, "-I"));
return result.elements();
}
private String pad(String source, String padChar,
int length, boolean leftPad) {
StringBuffer temp = new StringBuffer();
if (leftPad) {
for (int i = 0; i < length; i++) {
temp.append(padChar);
}
temp.append(source);
} else {
temp.append(source);
for (int i = 0; i < length; i++) {
temp.append(padChar);
}
}
return temp.toString();
}
/**
* return a string describing this clusterer.
*
* @return a description of the clusterer as a string
*/
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("\nSelf Organized Map\n==================\n");
if ((m_clusters == null) || (m_instances == null)) {
sb.append("No clusterer built yet!\n");
sb.append("==================\n\n");
return sb.toString();
}
sb.append("\nNumber of clusters: " + (m_width * m_height) + "\n");
int maxWidth = 0;
int maxAttWidth = 0;
if (m_calcStats) {
// set up max widths
// attributes
for (int i = 0; i < m_clusters.numAttributes(); i++) {
Attribute a = m_clusters.attribute(i);
if (a.name().length() > maxAttWidth) {
maxAttWidth = m_clusters.attribute(i).name().length();
}
}
for (int i = 0; i < m_clusters.numInstances(); i++) {
for (int j = 0; j < m_clusters.numAttributes(); j++) {
// check mean and std. dev. against maxWidth
double mean = Math.log(Math.abs(m_clusterStats[j][i][2])) / Math.log(10.0);
double stdD = Math.log(Math.abs(m_clusterStats[j][i][3])) / Math.log(10.0);
double width = (mean > stdD)
? mean
: stdD;
if (width < 0) {
width = 1;
}
// decimal + # decimal places + 1
width += 6.0;
if ((int) width > maxWidth) {
maxWidth = (int) width;
}
}
}
if (maxAttWidth < "Attribute".length()) {
maxAttWidth = "Attribute".length();
}
maxAttWidth += 2;
sb.append("\n\n");
sb.append(pad("Cluster", " ",
(maxAttWidth + maxWidth + 1) - "Cluster".length(),
true));
sb.append("\n");
sb.append(pad("Attribute", " ", maxAttWidth - "Attribute".length(), false));
// cluster #'s
for (int i = 0; i < m_clusters.numInstances(); i++) {
String classL = "" + i;
sb.append(pad(classL, " ", maxWidth + 1 - classL.length(), true));
}
sb.append("\n");
sb.append(pad("", " ", maxAttWidth, true));
for (int i = 0; i < m_clusters.numInstances(); i++) {
String numInst = Utils.doubleToString(m_clusterInstances[i].numInstances(), maxWidth, 2).trim();
numInst = "(" + numInst + ")";
sb.append(pad(numInst, " ", maxWidth + 1 - numInst.length(), true));
}
sb.append("\n");
sb.append(pad("", "=", maxAttWidth
+ (maxWidth * m_clusters.numInstances())
+ m_clusters.numInstances() + 1, true));
sb.append("\n");
for (int i = 0; i < m_clusters.numAttributes(); i++) {
String attName = m_clusters.attribute(i).name();
sb.append(attName + "\n");
String valueL = " value";
sb.append(pad(valueL, " ", maxAttWidth + 1 - valueL.length(), false));
for (int j = 0; j < m_clusters.numInstances(); j++) {
// values
String value =
Utils.doubleToString(denormalizeInstance(m_clusters.get(j)).value(i), maxWidth, 4).trim();
sb.append(pad(value, " ", maxWidth + 1 - value.length(), true));
}
sb.append("\n");
String minL = " min";
sb.append(pad(minL, " ", maxAttWidth + 1 - minL.length(), false));
for (int j = 0; j < m_clusters.numInstances(); j++) {
// means
String min =
Utils.doubleToString(m_clusterStats[i][j][0], maxWidth, 4).trim();
sb.append(pad(min, " ", maxWidth + 1 - min.length(), true));
}
sb.append("\n");
String maxL = " max";
sb.append(pad(maxL, " ", maxAttWidth + 1 - maxL.length(), false));
for (int j = 0; j < m_clusters.numInstances(); j++) {
// means
String max =
Utils.doubleToString(m_clusterStats[i][j][1], maxWidth, 4).trim();
sb.append(pad(max, " ", maxWidth + 1 - max.length(), true));
}
sb.append("\n");
String meanL = " mean";
sb.append(pad(meanL, " ", maxAttWidth + 1 - meanL.length(), false));
for (int j = 0; j < m_clusters.numInstances(); j++) {
// means
String mean =
Utils.doubleToString(m_clusterStats[i][j][2], maxWidth, 4).trim();
sb.append(pad(mean, " ", maxWidth + 1 - mean.length(), true));
}
sb.append("\n");
// now do std deviations
String stdDevL = " std. dev.";
sb.append(pad(stdDevL, " ", maxAttWidth + 1 - stdDevL.length(), false));
for (int j = 0; j < m_clusters.numInstances(); j++) {
String stdDev =
Utils.doubleToString(m_clusterStats[i][j][3], maxWidth, 4).trim();
sb.append(pad(stdDev, " ", maxWidth + 1 - stdDev.length(), true));
}
sb.append("\n\n");
}
}
return sb.toString();
}
/**
* Generates a clusterer. Has to initialize all fields of the clusterer
* that are not being set via options.
*
* @param data set of instances serving as training data
* @throws Exception if the clusterer has not been
* generated successfully
*/
public void buildClusterer(Instances data) throws Exception {
// can clusterer handle the data?
getCapabilities().testWithFail(data);
// copy the original instances
m_instances = new Instances(data);
// normalize instances
m_instances = normalize(m_instances);
// init clusters
m_clusters = initClusters();
// init the pointList (used in EuclideanDistance.closestPoint)
m_clusterList = new int[m_clusters.numInstances()];
for (int i = 0; i < m_clusterList.length; i++) {
m_clusterList[i] = i;
}
// the actual learning rate
double learningRate;
// the actual effective neighborhood
double effectiveWidth;
// init euclidean distance
m_euclideanDistance.setDontNormalize(true);
m_euclideanDistance.setInstances(m_clusters);
// the winner neuron
int winningNeuron;
for (int epoch = 1; epoch <= m_convergenceEpochs + m_orderingEpochs; epoch++) {
learningRate = calcLearningRate(epoch);
effectiveWidth = calcEffectiveWidth(epoch);
for (int instance = 0; instance < m_instances.numInstances(); instance++) {
winningNeuron = m_euclideanDistance.closestPoint(m_instances.get(instance), m_clusters, m_clusterList);
// update the weights
for (int neuron = 0; neuron < m_clusters.numInstances(); neuron++) {
updateWeights(neuron, winningNeuron, instance, learningRate, effectiveWidth);
}
}
}
if (m_calcStats) {
calcStatistics();
}
}
/**
* This function calculates the clusterer's statistics
*/
private void calcStatistics() {
// init cluster statistics
m_clusterStats = new double[m_instances.numAttributes()][m_width * m_height][4];
// init clusters assignements
m_clusterInstances = new Instances[m_width * m_height];
// keep cluster's attributes
for (int i = 0; i < m_clusters.numInstances(); i++) {
m_clusterInstances[i] = new Instances(m_instances);
m_clusterInstances[i].clear();
try {
Instances clusters = getClusters();
for (int j = 0; j < clusters.numAttributes(); j++) {
m_clusterStats[j][i][0] = clusters.get(i).value(j);
}
} catch (Exception ex) {
}
}
// get instances in each class
for (int instance = 0; instance < m_instances.numInstances(); instance++) {
Instance inst = m_instances.get(instance);
int cluster = -1;
try {
cluster = clusterInstance(denormalizeInstance(inst));
} catch (Exception ex) {
}
if (cluster != -1) {
m_clusterInstances[cluster].add(denormalizeInstance(inst));
}
}
//calc min, max, mean, stdev for each cluster
for (int cluster = 0; cluster < m_clusters.numInstances(); cluster++) {
for (int attr = 0; attr < m_clusters.numAttributes(); attr++) {
int unknownValues = 0;
double min = Double.POSITIVE_INFINITY;
double max = Double.NEGATIVE_INFINITY;
double mean = 0;
double stdev = 0;
for (int instance = 0; instance < m_clusterInstances[cluster].numInstances(); instance++) {
Instance inst = m_clusterInstances[cluster].get(instance);
if (!Double.isNaN(inst.value(attr))) {
mean += inst.value(attr);
if (inst.value(attr) < min) {
min = inst.value(attr);
}
if (inst.value(attr) > max) {
max = inst.value(attr);
}
} else {
unknownValues++;
}
}
mean /= (m_clusterInstances[cluster].numInstances() - unknownValues);
for (int instance = 0; instance < m_clusterInstances[cluster].numInstances(); instance++) {
Instance inst = m_clusterInstances[cluster].get(instance);
if (!Double.isNaN(inst.value(attr))) {
stdev += (inst.value(attr) - mean) * (inst.value(attr) - mean);
}
}
stdev /= (m_clusterInstances[cluster].numInstances() - 1 - unknownValues);
stdev = Math.sqrt(stdev);
if (min == Double.POSITIVE_INFINITY) {
min = 0;
}
if (max == Double.NEGATIVE_INFINITY) {
max = 0;
}
if((m_clusterInstances[cluster].numInstances() - unknownValues)==0) {
min = Double.NaN;
max = Double.NaN;
stdev = Double.NaN;
}
m_clusterStats[attr][cluster][0] = min;
m_clusterStats[attr][cluster][1] = max;
m_clusterStats[attr][cluster][2] = mean;
m_clusterStats[attr][cluster][3] = stdev;
}
}
}
/**
* This function updates the weights of a cluster
* @param updateCluster the cluster to update
* @param winningCluster the winning cluster for the current training instance
* @param instance the index of current training instance
* @param learningRate the current learning rate
* @param effWidth the current effective width
*/
private void updateWeights(int updateCluster, int winningCluster, int instance, double learningRate, double effWidth) {
double diff;
int winnerWidth = winningCluster % m_width;
int winnerHeight = winningCluster / m_width;
int width = updateCluster % m_width;
int height = updateCluster / m_width;
double distance = Math.pow((winnerWidth - width), 2) + Math.pow((winnerHeight - height), 2);
double h = Math.exp(-distance / (2 * Math.pow(effWidth, 2)));
for (int j = 0; j < m_clusters.numAttributes(); j++) {
diff = learningRate * h * (m_instances.get(instance).value(j) - m_clusters.get(updateCluster).value(j));
if (!Double.isNaN(diff)) {
m_clusters.get(updateCluster).setValue(j, m_clusters.get(updateCluster).value(j) + diff);
}
}
}
/**
* This function calculates the effective width of the topological
* netowork for the current iteration
* @param iteration the current iteration.
* @return the effective width .
*/
private double calcEffectiveWidth(int iteration) {
double effectiveWidth;
if (iteration <= m_orderingEpochs) {
// Ordering phase
double latticeRadius = Math.sqrt(m_width * m_width + m_height * m_height) / 2;
effectiveWidth = latticeRadius * Math.exp(-iteration * Math.log(latticeRadius) / m_orderingEpochs);
} else {
// Convergence phase
effectiveWidth = 0.0001;
}
return effectiveWidth;
}
/**
* This function calculates the learning rate for the current iteration
* @param iteration the current iteration.
* @return the learning rate.
*/
private double calcLearningRate(int iteration) {
double learningRate;
if (iteration <= m_orderingEpochs) {
// Ordering phase
learningRate = m_learningRate * Math.exp(-(double) iteration * Math.log(100. * m_learningRate) / m_orderingEpochs);
} else {
// Convergence phase
learningRate = 0.01;
}
return learningRate;
}
/**
* This function performs the denormalization of the attributes of an instance.
*
* @param inst the instance.
* @return The modified instance. This needs to be done as it deep copies
* the instance which will need to be passed back out.
*/
protected Instance denormalizeInstance(Instance inst) {
inst = new DenseInstance(inst);
if (m_normalizeAttributes) {
for (int noa = 0; noa < inst.numAttributes(); noa++) {
inst.setValue(noa, (inst.value(noa) * (m_attributeMax[noa] - m_attributeMin[noa]) + (m_attributeMax[noa] + m_attributeMin[noa])) / 2);
}
}
return inst;
}
/**
* This function performs the normalization of the attributes of an instance.
*
* @param inst the instance.
* @return The modified instance. This needs to be done as it deep copies
* the instance which will need to be passed back out.
*/
protected Instance normalizeInstance(Instance inst) {
inst = new DenseInstance(inst);
double min;
double max;
for (int noa = 0; noa < m_instances.numAttributes(); noa++) {
if (inst.value(noa) > m_attributeMax[noa]) {
max = inst.value(noa);
} else {
max = m_attributeMax[noa];
}
if (inst.value(noa) < m_attributeMin[noa]) {
min = inst.value(noa);
} else {
min = m_attributeMin[noa];
}
if ((max - min) != 0) {
inst.setValue(noa, -1 + 2 * (inst.value(noa) - min) / (max - min));
} else {
inst.setValue(noa, inst.value(noa));
}
}
return inst;
}
/**
* This function performs the normalization of the attributes if applicable.
* (note that regardless of the options it will fill an array with the range
* and base, set to normalize all attributes and the class to be between -1
* and 1)
* @param inst the instances.
* @return The modified instances. This needs to be done. If the attributes
* are normalized then deep copies will be made of all the instances which
* will need to be passed back out.
*/
private Instances normalize(Instances inst) throws Exception {
if (inst != null) {
inst = new Instances(inst);
// x bounds
double min = Double.POSITIVE_INFINITY;
double max = Double.NEGATIVE_INFINITY;
double value;
m_attributeMax = new double[inst.numAttributes()];
m_attributeMin = new double[inst.numAttributes()];
for (int noa = 0; noa < inst.numAttributes(); noa++) {
min = Double.POSITIVE_INFINITY;
max = Double.NEGATIVE_INFINITY;
for (int i = 0; i < inst.numInstances(); i++) {
if (!inst.instance(i).isMissing(noa)) {
value = inst.instance(i).value(noa);
if (value < min) {
min = value;
}
if (value > max) {
max = value;
}
}
}
m_attributeMax[noa] = max;
m_attributeMin[noa] = min;
}
}
if (m_normalizeAttributes) {
for (int i = 0; i < inst.numInstances(); i++) {
inst.set(i, normalizeInstance(inst.instance(i)));
}
}
return inst;
}
/**
* This function initializes the clusters' weights.
*
* @return The initialized clusters
*/
protected Instances initClusters() {
Instances weights = new Instances(m_instances, m_width * m_height);
for (int i = 0; i < m_width * m_height; i++) {
double[] instValues = new double[m_instances.numAttributes()];
for (int j = 0; j < m_instances.numAttributes(); j++) {
if (m_normalizeAttributes) {
instValues[j] = 0;
} else {
instValues[j] = (m_attributeMax[j] + m_attributeMin[j]) / 2;
}
}
Instance inst = new DenseInstance(1, instValues);
weights.add(i, inst);
}
return weights;
}
/**
* Returns the number of clusters.
*
* @return the number of clusters generated for a training dataset.
* @exception Exception if number of clusters could not be returned
* successfully
*/
public int numberOfClusters() throws Exception {
return m_height * m_width;
}
/**
* This function returns the clusters if the clusterer is build
* or an exception if the clusterer is not build.
*
* The clusters are returned dernomalized even if normalizeAttributes
* option is set.
*
* @return The clusters
* @throws Exception
*/
public Instances getClusters() throws Exception {
if (m_clusters == null) {
throw new Exception("No clusterer built yet!");
}
Instances inst = new Instances(m_clusters);
if (m_normalizeAttributes) {
for (int i = 0; i < inst.numInstances(); i++) {
inst.set(i, denormalizeInstance(inst.instance(i)));
}
}
return inst;
}
/**
* This function returns the training statistics in a 3-dimension array
* as follows:<br/>
* First dimension: the attribute index<br/>
* Second dimension: the cluster index<br/>
* Third dimension: the static index (Valid values are 0: min, 1: max, 2: mean, 3: st. dev.)
*
* @return the statistics array
* @throws Exception
*/
public double[][][] getStatistics() throws Exception {
if (m_calcStats) {
if (m_clusterStats == null) {
throw new Exception("No clusterer built yet!");
}
} else {
throw new Exception("Statistics are not calculated");
}
return m_clusterStats;
}
/**
* This function returns the cluster assignment for each of the
* training instances. The array's index indicates the corresponding
* cluster.
*
* @return the cluster assignments array
* @throws Exception
*/
public Instances[] getClusterInstances() throws Exception {
if (m_calcStats) {
if (m_clusterInstances == null) {
throw new Exception("No clusterer built yet!");
}
} else {
throw new Exception("Statistics are not calculated");
}
return m_clusterInstances;
}
} |
Partager