| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 
 |  
#ifndef GRAPH_H_
#define GRAPH_H_
#include<vector>
#include<iterator>
#include<map>
#include<stack>
#include<queue>
#include<unordered_set>
#include "Node.h"
 
using namespace std;
 
namespace DD {
 
 
template<typename T> class Graph {
public:
	enum Mode {PROPRIETARY, NOCARE}; // S'occupe de la destruction des noeuds (PROPRIETARY) ou pas (NOCARE).
private:
 
 
	bool knowConnex; // Utilisation future
	bool knowCycles; // Utilisation future
	bool hasCycle;   // Utilisation future
	int nConnex;     // Utilisation future
	unordered_set<Node<T>*> nodes; 
//	vector<typename unordered_set<typename Node<T>*> > connexComp;
	Mode mode;
 
public:
 
	Graph() : /*connexComp(vector<typename unordered_set<typename Node<T>*> >() ),*/ knowConnex(false),
			knowCycles(false), nConnex(0), hasCycle(false), mode(NOCARE), nodes(unordered_set<Node<T>*>()){}
	bool empty() const {return nodes.empty();}
 
	Graph(Node<T>* pN) : Graph() {
		insert(pN);
	}
 
	void insert(Node<T>* pN){
		if (nodes.find(pN)==nodes.end()){
		nodes.insert(pN);
		DFIterator dfiterator(pN);
		Node<T>* pNN;
		while (pNN=*(++dfiterator)) {nodes.insert(pNN);}
		}
	}
	void setMode(Mode M){mode = M;}
//	int nCycles() const {return nCycles;}
//	int nConnexComp() const {return nConnex;}
//	virtual bool isTree() const {return (nCycles()==0) && (nConnexComp()==1);}
	virtual ~Graph() {
		if (mode==PROPRIETARY) {
			auto e=nodes.end();
			auto b=nodes.begin();
			for(; b!=e; b++) delete *b;
		}
	}
 
	class DFIterator : public iterator<forward_iterator_tag, Node<T>*>
	{
		Node<T>* pointedNode;
		stack<Node<T>*> nextToVisit;
		map<Node<T>*,bool> marked;
		int nMarked;
 
		void push(const vector<Node<T>*>& v)
		{for(int i=v.size()-1;i>=0;i--) nextToVisit.push(v[i]);}
		void markAndPush()
		{
			marked[pointedNode] = true; nMarked++; push(pointedNode->hookBranches());
		}
	public :
		DFIterator() : pointedNode(0), nextToVisit(stack<Node<T>*>()), marked(map<Node<T>*,bool>), nMarked(0) {}
		DFIterator(Node<T>* N) : DFIterator() {
			if(N!=nullptr){
				pointedNode = N;
				markAndPush();
			}
		}
		DFIterator(vector<Node<T>*>::iterator& i) : DFIterator() {
			poitedNode = *i; markAndPush();
		}
 
		virtual DFIterator operator++(){
			if (!pointedNode==0){
					while(marked[nextToVisit.top()]&&(!nextToVisit.empty())){nextToVisit.pop();}
					if(nextToVisit.empty()){pointedNode=0;}
					else{
						pointedNode=nextToVisit.top(); nextToVisit.pop();
						markAndPush();
					}
			}
			return *this;
		}
		Node<T>* operator *() {return pointedNode;}
		virtual ~DFIterator{}
	};
 
	DFIterator beginDF() {if (!empty()) return DFIterator(*(nodes.begin())); return DFIterator();}
 
	class BFIterator {
		Node<T>* pointedNode;
		queue<Node<T>*> nextToVisit;
		map<Node<T>*,bool> marked;
		int nMarked;
 
		void push(const vector<Node<T>*>& v)
		{for(int i=0;i<v.size();i++) nextToVisit.push(v[i]);}
		void markAndPush()
		{
			marked[pointedNode] = true; nMarked++; push(pointedNode->hookBranches());
		}
	public :
		BFIterator() : pointedNode(0), nextToVisit(queue<Node<T>*>()), marked(map<Node<T>*,bool>), nMarked(0) {}
		BFIterator(Node<T>* N) : BFIterator() {
			if(N!=nullptr){
				pointedNode = N;
				markAndPush();
			}
		}
		BFIterator(vector<Node<T>*>::iterator& i) : BFIterator() {
			pointedNode = *i; markAndPush();
		}
 
		virtual DFIterator operator++(){
			if (!pointedNode==0){
					while(marked[nextToVisit.front()]&&(!nextToVisit.empty())){nextToVisit.pop();}
					if(nextToVisit.empty()){pointedNode=nullptr;}
					else{
						pointedNode=nextToVisit.front(); nextToVisit.pop();
						markAndPush();
					}
			}
			return *this;
		}
		Node<T>* operator *() {return pointedNode;}
		virtual ~BFIterator {}
	};
 
	BFIterator beginBF() {if (!nodes.empty()) return BFIterator(*(nodes.begin())); return BFIterator();}
 
 
}; | 
Partager