1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
| det = 1;
for k = 1:n-1 ; % On fait ici la recherche du pivot?
max = 0;
p(k) = 0;
for i = k:n %
s = 0;
for j = k:n
s = s + abs(a(i,j)); %
end
q = abs(a(i,k))/s;
if q > max
max = q;
p(k) = i;
end
end
if max == 0
det = 0; %Matrix singulier?
break;
end
if p(k) ~= k %
det = -det
for j = 1:n
h = a(k,j);
a(k,j) = a(p(k),j);
a(p(k),j) = h;
end
end
det = det * a(k,k);
for i = k+1:n %
a(i,k) = a(i,k)/a(k,k);
for j = k+1:n
a(i,j) = a(i,j)- a(i,k)* a(k,j);
end
end
end
det = det*a(n,n);
if det == 0
'Matrix singulier'
else
%
for k = 1:n-1
if p(k) ~= k
h = b(k);
b(k) = b(p(k));
b(p(k)) = h;
end
end
for i = 2:n
for j = 1:i-1
b(i) = b(i)- a(i,j)* b(j); %
end
end
%
for i = n:-1:1
s = b(i);
for k = i+1:n
s = s - a(i,k)* b(k); %
end
b(i) = s/a(i,i);
end
end |
Partager