1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
| ///////////////////////////////////////////////////////////////////////////////
/// YenTopKShortestPathsAlg.cpp
/// The implementation of Yen's algorithm to get the top k shortest paths
/// connecting a pair of vertices in a graph.
///
/// @remarks <TODO: insert remarks here>
///
/// @author Yan Qi @date 7/10/2010
///
/// $Id: YenTopKShortestPathsAlg.cpp 65 2010-09-08 06:48:36Z yan.qi.asu $
///
///////////////////////////////////////////////////////////////////////////////
#include <set>
#include <map>
#include <queue>
#include <vector>
#include "GraphElements.h"
#include "Graph.h"
#include "DijkstraShortestPathAlg.h"
#include "YenTopKShortestPathsAlg.h"
using namespace std;
void YenTopKShortestPathsAlg::clear()
{
m_nGeneratedPathNum = 0;
m_mpDerivationVertexIndex.clear();
m_vResultList.clear();
m_quPathCandidates.clear();
}
void YenTopKShortestPathsAlg::_init()
{
clear();
if (m_pSourceVertex != NULL && m_pTargetVertex != NULL)
{
BasePath* pShortestPath = get_shortest_path(m_pSourceVertex, m_pTargetVertex);
if (pShortestPath != NULL && pShortestPath->length() > 1)
{
m_quPathCandidates.insert(pShortestPath);
m_mpDerivationVertexIndex[pShortestPath] = m_pSourceVertex;
}
}
}
BasePath* YenTopKShortestPathsAlg::get_shortest_path( BaseVertex* pSource, BaseVertex* pTarget )
{
DijkstraShortestPathAlg dijkstra_alg(m_pGraph);
return dijkstra_alg.get_shortest_path(pSource, pTarget);
}
bool YenTopKShortestPathsAlg::has_next()
{
return !m_quPathCandidates.empty();
}
BasePath* YenTopKShortestPathsAlg::next()
{
//1. Prepare for removing vertices and arcs
BasePath* cur_path = *(m_quPathCandidates.begin());//m_quPathCandidates.top();
//m_quPathCandidates.pop();
m_quPathCandidates.erase(m_quPathCandidates.begin());
m_vResultList.push_back(cur_path);
int count = m_vResultList.size();
BaseVertex* cur_derivation_pt = m_mpDerivationVertexIndex.find(cur_path)->second;
vector<BaseVertex*> sub_path_of_derivation_pt;
cur_path->SubPath(sub_path_of_derivation_pt, cur_derivation_pt);
int sub_path_length = sub_path_of_derivation_pt.size();
//2. Remove the vertices and arcs in the graph
for (int i=0; i<count-1; ++i)
{
BasePath* cur_result_path = m_vResultList.at(i);
vector<BaseVertex*> cur_result_sub_path_of_derivation_pt;
if (!cur_result_path->SubPath(cur_result_sub_path_of_derivation_pt, cur_derivation_pt)) continue;
if (sub_path_length != cur_result_sub_path_of_derivation_pt.size()) continue;
bool is_equal = true;
for (int i=0; i<sub_path_length; ++i)
{
if (sub_path_of_derivation_pt.at(i) != cur_result_sub_path_of_derivation_pt.at(i))
{
is_equal = false;
break;
}
}
if (!is_equal) continue;
//
BaseVertex* cur_succ_vertex = cur_result_path->GetVertex(sub_path_length+1);
m_pGraph->remove_edge(make_pair(cur_derivation_pt->getID(), cur_succ_vertex->getID()));
}
//2.1 remove vertices and edges along the current result
int path_length = cur_path->length();
for(int i=0; i<path_length-1; ++i)
{
m_pGraph->remove_vertex(cur_path->GetVertex(i)->getID());
m_pGraph->remove_edge(make_pair(
cur_path->GetVertex(i)->getID(), cur_path->GetVertex(i+1)->getID()));
}
//3. Calculate the shortest tree rooted at target vertex in the graph
DijkstraShortestPathAlg reverse_tree(m_pGraph);
reverse_tree.get_shortest_path_flower(m_pTargetVertex);
//4. Recover the deleted vertices and update the cost and identify the new candidates results
bool is_done = false;
for(int i=path_length-2; i>=0 && !is_done; --i)
{
//4.1 Get the vertex to be recovered
BaseVertex* cur_recover_vertex = cur_path->GetVertex(i);
m_pGraph->recover_removed_vertex(cur_recover_vertex->getID());
//4.2 Check if we should stop continuing in the next iteration
if (cur_recover_vertex->getID() == cur_derivation_pt->getID())
{
is_done = true;
}
//4.3 Calculate cost using forward star form
BasePath* sub_path = reverse_tree.update_cost_forward(cur_recover_vertex);
//4.4 Get one candidate result if possible
if (sub_path != NULL)
{
++m_nGeneratedPathNum;
//4.4.1 Get the prefix from the concerned path
double cost = 0;
reverse_tree.correct_cost_backward(cur_recover_vertex);
vector<BaseVertex*> pre_path_list;
for (int j=0; j<path_length; ++j)
{
BaseVertex* cur_vertex = cur_path->GetVertex(j);
if (cur_vertex->getID() == cur_recover_vertex->getID())
{
//j = path_length;
break;
}else
{
cost += m_pGraph->get_original_edge_weight(
cur_path->GetVertex(j), cur_path->GetVertex(1+j));
pre_path_list.push_back(cur_vertex);
}
}
//
for (int j=0; j<sub_path->length(); ++j)
{
pre_path_list.push_back(sub_path->GetVertex(j));
}
//4.4.2 Compose a candidate
sub_path = new Path(pre_path_list, cost+sub_path->Weight());
//4.4.3 Put it in the candidate pool if new
if (m_mpDerivationVertexIndex.find(sub_path) == m_mpDerivationVertexIndex.end())
{
m_quPathCandidates.insert(sub_path);
m_mpDerivationVertexIndex[sub_path] = cur_recover_vertex;
}
}
//4.5 Restore the edge
BaseVertex* succ_vertex = cur_path->GetVertex(i+1);
m_pGraph->recover_removed_edge(make_pair(cur_recover_vertex->getID(), succ_vertex->getID()));
//4.6 Update cost if necessary
double cost_1 = m_pGraph->get_edge_weight(cur_recover_vertex, succ_vertex)
+ reverse_tree.get_start_distance_at(succ_vertex);
if (reverse_tree.get_start_distance_at(cur_recover_vertex) > cost_1)
{
reverse_tree.set_start_distance_at(cur_recover_vertex, cost_1);
reverse_tree.set_predecessor_vertex(cur_recover_vertex, succ_vertex);
reverse_tree.correct_cost_backward(cur_recover_vertex);
}
}
//5. Restore everything
m_pGraph->recover_removed_edges();
m_pGraph->recover_removed_vertices();
return cur_path;
}
void YenTopKShortestPathsAlg::get_shortest_paths( BaseVertex* pSource,
BaseVertex* pTarget, int top_k, vector<BasePath*>& result_list)
{
m_pSourceVertex = pSource;
m_pTargetVertex = pTarget;
_init();
int count = 0;
while (has_next() && count < top_k)
{
next();
++count;
}
result_list.assign(m_vResultList.begin(),m_vResultList.end());
} |
Partager