| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 
 |  
 
function M = slmetric_pw(X1, X2, mtype, varargin)
%SLMETRIC_PW Compute the metric between column vectors pairwisely
%
% [ Syntax ]
%   - M = slmetric_pw(X1, X2, mtype);
%   - M = slmetric_pw(X1, X2, mtype, ...);
%
% [ Arguments ]
%   - X1, X2:       the sample matrices
%   - mtype:        the string indicating the type of metric
%   - M:            the resulting metric matrix
%
% [ Description ]
%    - M = slmetric_pw(X1, X2, mtype) Computes the metrics between
%      column vectors of X1 and X2 pairwisely, using the metric
%      specified by mtype. 
%
%      Both X1 and X2 are matrices with each column representing a 
%      sample. X1 and X2 should have the same number of rows. Suppose
%      the size of X1 is d x n1, and the size of X2 is d x n2. Then 
%      the output metric matrix M will be of size n1 x n2, in which
%      M(i, j) is the metric value between X1(:,i) and X2(:,j).
%
%    - M = slmetric_pw(X1, X2, mtype, ...) Some metric types requires
%      extra parameters, which should be specified in params.
%
%      The supported metrics of this function are listed as follows: 
%      \{:
%        - eucdist:        Euclidean distance: 
%                          $ ||x - y|| $
%
%        - sqdist:         Square of Euclidean distance: 
%                          $ ||x - y||^2 $
%
%        - dotprod:        Canonical dot product: 
%                          $ <x,y> = x^T * y $ 
%
%        - nrmcorr:        Normalized correlation (cosine angle):
%                          $ (x^T * y ) / (||x|| * ||y||) $
%
%        - corrdist:       Normalized Correlation distance
%                          $ 1 - nrmcorr(x, y) $
%
%        - angle:          Angle between two vectors (in radian)  
%                          $ arccos (nrmcorr(x, y)) $
%        - quadfrm:        Quadratic form:  
%                          $ x^T * Q * y $
%                         Q is specified in the 1st extra parameter 
%
%        - quaddiff:       Quadratic form of difference:
%                          $ (x - y)^T * Q * (x - y) $
%                         Q is specified in the 1st extra parameter 
%
%        - cityblk:        City block distance (abssum of difference)
%                          $ sum_i |x_i - y_i| $
%
%        - maxdiff:        Maximum absolute difference  
%                          $ max_i |x_i - y_i| $
%
%        - mindiff:        Minimum absolute difference
%                          $ min_i |x_i - y_i| $
%
%        - minkowski:      Minkowski distance
%                          $ (\sum_i |x_i - y_i|^p)^(1/p) $
%                         The order p is specified in the 1st extra parameter
%
%        - wsqdist:        Weighted square of Euclidean distance     
%                          $ \sum_i w_i (x_i - y_i)^2 $
%                         the weights w is specified in 1st extra parameter 
%                         as a d x 1 column vector    
%
%        - hamming:        Hamming distance with threshold t
%                          \{
%                              ht1 = x > t
%                              ht2 = y > t
%                              d = sum(ht1 ~= ht2)                  
%                          \}
%                         use threshold t as the first extra param.
%                         (by default, t is set to zero).
%
%        - hamming_nrm:    Normalized hamming distance, which equals the
%                          ratio of the elements that differ.
%                          \{
%                              ht1 = x > t
%                              ht2 = y > t
%                              d = sum(ht1 ~= ht2) / length(ht1)                
%                          \}
%                          use threshold t as the first extra param.
%                         (by default, t is set to zero).
%
%        - intersect:      Histogram Intersection
%                           $ d = sum min(x, y) / min(sum(x), sum(y))$
%
%        - intersectdis:   Histogram intersection distance
%                           $ d = 1 - sum min(x, y) / min(sum(x), sum(y)) $
%
%        - chisq:          Chi-Square Distance
%                           $ d = sum (x(i) - y(i))^2/(2 * (x(i)+y(i))) $
%
%        - kldiv:          Kull-back Leibler divergence
%                           $ d = sum x(i) log (x(i) / y(i)) $
%
%        - jeffrey:        Jeffrey divergence
%                           $ d = KL(h1, (h1+h2)/2) + KL(h2, (h1+h2)/2) $
%      \:}
%
% [ Remarks ]
%   - Both X1 and X2 should be a matrix of numeric values, except
%     for case when metric type is 'hamming' or 'hamming_nrm'. 
%     For hamming or hamming_nrm metric, the input matrix can be logical.
%
% [ Examples ]
%   - Compute different types of metrics in pairwise manner
%     \{
%         % prepare sample matrix
%         X1 = rand(10, 100);
%         X2 = rand(10, 150);
%
%         % compute the euclidean distances (L2) 
%         % between the samples in X1 and X2
%         M = slmetric_pw(X1, X2, 'eucdist');
%
%         % compute the eucidean distances between the samples
%         % in X1 in a pairwise manner
%         M = slmetric_pw(X1, X1, 'eucdist');
%
%         % compute the city block distances (L1)
%         M = slmetric_pw(X1, X2, 'cityblk'); 
%
%         % compute the normalize correlations
%         M = slmetric_pw(X1, X2, 'nrmcorr');
%
%         % compute hamming distances
%         M = slmetric_pw(X1, X2, 'hamming', 0.5);
%         M2 = slmetric_pw((X1 > 0.5), (X2 > 0.5), 'hamming');
%         assert(isequal(M, M2));
%     \}
%
%   - Compute the parameterized metrics
%     \{
%         % compute weighted squared distances with user-supplied weights
%         weights = rand(10, 1);
%         M = slmetric_pw(X1, X2, 'wsqdist', weights);
%
%         % compute quadratic distances (x-y)^T * Q (x-y)
%         Q = rand(10, 10);
%         M = slmetric_pw(X1, X2, 'quaddiff', Q);
%
%         % compute Minkowski distance of order 3         
%         M = slmetric_pw(X1, X2, 'minkowski', 3);
%     \}
%
% [ History ]
%   - Created by Dahua Lin on Dec 06th, 2005
%   - Modified by Dahua Lin on Apr 21st, 2005
%       - regularize the error reporting
%   - Modified by Dahua Lin on Sep 11st, 2005
%       - completely rewrite the core codes based on new mex computation 
%         cores, and the runtime efficiency in both time and space is 
%         significantly increased.
%   - Modified by Dahua Lin on Jul 02, 2007
%       - rewrite the core computation based on the bsxfun introduced in
%         MATLAB R2007a
%       - rewrite the core-mex for cityblk, maxdiff, mindiff
%       - introduce new metrics: corrdist, minkowski
%   - Modified by Dahua Lin on Jul 30, 2007
%       - Add the metric types for histograms, which are originally
%         implemented in slhistmetric_pw in sltoolbox v1.
%   - Modified by Dahua Lin on Aug 16, 2007
%       - revise some of the help contents
%
 
 
%% parse and verify input arguments
error(nargchk(3, inf, nargin));
assert(ischar(mtype), 'sltoolbox:slmetric_pw:invalidarg', ...
    'The metric type should be a string.');
 
if strcmp(mtype, 'hamming') || strcmp(mtype, 'hamming_nrm')
    assert((isnumeric(X1) || islogical(X1)) && ndims(X1) == 2 && ...
           (isnumeric(X2) || islogical(X2)) && ndims(X2) == 2, ...
        'sltoolbox:slmetric_pw:invalidarg', 'X1 and X2 should be numeric or logical matrices.');        
else
    assert(isnumeric(X1) && ndims(X1) == 2 && isnumeric(X2) && ndims(X2) == 2, ...
        'sltoolbox:slmetric_pw:invalidarg', 'X1 and X2 should be numeric matrices.');
end
 
assert(isa(X2, class(X1)), ...
    'sltoolbox:slmetric_pw:invalidarg', 'X1 and X2 should be of the same class.');
 
if isempty(X1) || isempty(X2)
    M = [];
    return;
end
 
 
%% compute
switch mtype        
    case {'eucdist', 'sqdist'}
        checkdim(X1, X2);        
        M = bsxfun(@plus, sum(X1 .* X1, 1)', (-2) * X1' * X2);        
        M = bsxfun(@plus, sum(X2 .* X2, 1), M);        
        M(M < 0) = 0;                        
        if strcmp(mtype, 'eucdist')
            M = sqrt(M);
        end 
 
    case 'dotprod'
        checkdim(X1, X2);        
        M = X1' * X2;
 
    case {'nrmcorr', 'corrdist', 'angle'}
        checkdim(X1, X2);
        ns1 = sqrt(sum(X1 .* X1, 1));
        ns2 = sqrt(sum(X2 .* X2, 1));
        ns1(ns1 == 0) = 1;  
        ns2(ns2 == 0) = 1;
        M = bsxfun(@times, X1' * X2, 1 ./ ns1');
        M = bsxfun(@times, M, 1 ./ ns2);
        switch mtype
            case 'corrdist'
                M = 1 - M;
            case 'angle'
                M = real(acos(M));
        end
 
    case 'quadfrm'
        Q = varargin{1};       
        M = X1' * Q * X2;
 
    case 'quaddiff'
        checkdim(X1, X2);        
        Q = varargin{1};
        M = X1' * (-(Q + Q')) * X2;
        M = bsxfun(@plus, M, sum(X1 .* (Q * X1), 1)');
        M = bsxfun(@plus, M, sum(X2 .* (Q * X2), 1));        
 
    case 'cityblk'
        checkdim(X1, X2);  
        M = pwmetrics_cimp(X1, X2, int32(1));
 
    case 'maxdiff'
        checkdim(X1, X2); 
        M = pwmetrics_cimp(X1, X2, int32(3));
 
    case 'mindiff'
        checkdim(X1, X2);  
        M = pwmetrics_cimp(X1, X2, int32(2));
 
    case 'minkowski'
        checkdim(X1, X2);
        pord = varargin{1};
        if ~isscalar(pord)
            error('sltoolbox:slmetric_pw:invalidparam', ...
                'the mikowski order should be a scalar');
        end
        pord = cast(pord, class(X1));        
        M = pwmetrics_cimp(X1, X2, int32(4), pord);
 
    case 'wsqdist'
        d = checkdim(X1, X2);
        w = varargin{1};
        if ~isequal(size(w), [d, 1])
            error('sltoolbox:slmetric_pw:invalidparam', ...
                'the weights should be given as a d x 1 vector.');
        end              
        wX2 = bsxfun(@times, X2, w);
        M = bsxfun(@plus, (-2) * X1' * wX2, sum(wX2 .* X2, 1));
        clear wX2;        
        wX1 = bsxfun(@times, X1, w);
        M = bsxfun(@plus, M, sum(wX1 .* X1, 1)');      
 
    case {'hamming', 'hamming_nrm'}
        checkdim(X1, X2);
        if islogical(X1) && islogical(X2)
            H1 = X1;
            H2 = X2;
        else
            if isempty(varargin)
                t = 0;
            else
                t = varargin{1};
                assert(isnumeric(t) && isscalar(t), ...
                    'sltoolbox:slmetric_pw:invalidparam', 't should be a numeric scalar.');
            end
            H1 = X1 > t;
            H2 = X2 > t;
        end
        M = pwhamming_cimp(H1, H2);
        if strcmp(mtype, 'hamming_nrm')
            M = M / size(H1, 1);
        end
 
    case 'intersect'
        checkdim(X1, X2);
        M = pwmetrics_cimp(X1, X2, int32(5));
 
    case 'intersectdis'
        checkdim(X1, X2);
        M = 1 - pwmetrics_cimp(X1, X2, int32(5));
 
    case 'chisq'
        checkdim(X1, X2);
        M = pwmetrics_cimp(X1, X2, int32(6));
 
    case 'kldiv'
        checkdim(X1, X2);
        M = pwmetrics_cimp(X1, X2, int32(7));
 
    case 'jeffrey'
        checkdim(X1, X2);
        M = pwmetrics_cimp(X1, X2, int32(8));
 
    otherwise
        error('sltoolbox:slmetric_pw:unknowntype', 'Unknown metric type %s', mtype);
 
 
end
 
%% Auxiliary function
 
function d = checkdim(X1, X2)
 
d = size(X1, 1);
if d ~= size(X2, 1)
    error('sltoolbox:slmetric_pw:sizmismatch', ...
        'X1 and X2 have different sample dimensions');
end | 
Partager