1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
| ############################################################################################################################################
# VARIABLES
############################################################################################################################################
#gen. variables
x_cur=3
y_cur=-4
laps=0.5
#tetris variables
tetris_num=0
tetris_rot=0
width_one=36.0
tetris=[[((0,2),(0,3),(1,2),(1,3)),((0,2),(0,3),(1,2),(1,3)),((0,2),(0,3),(1,2),(1,3)),((0,2),(0,3),(1,2),(1,3))],[((0,2),(0,3),(1,3),(2,3)),((0,1),(0,2),(0,3),(1,1)),((0,2),(1,2),(2,2),(2,3)),((0,3),(1,1),(1,2),(1,3))],[((0,3),(1,2),(1,3),(2,2)),((0,1),(0,2),(1,2),(1,3)),((0,3),(1,2),(1,3),(2,2)),((0,1),(0,2),(1,2),(1,3))],[((0,3),(1,3),(2,3),(3,3)),((0,1),(0,2),(0,3),(0,4)),((0,3),(1,3),(2,3),(3,3)),((0,1),(0,2),(0,3),(0,4))],[((0,2),(1,2),(1,3),(2,3)),((0,2),(0,3),(1,1),(1,2)),((0,2),(1,2),(1,3),(2,3)),((0,2),(0,3),(1,1),(1,2))],[((0,2),(1,2),(1,3),(2,2)),((0,2),(1,1),(1,2),(1,3)),((0,3),(1,2),(1,3),(2,3)),((0,1),(0,2),(0,3),(1,2))],[((0,3),(1,3),(2,2),(2,3)),((1,1),(1,2),(1,3),(2,3)),((0,2),(0,3),(1,2),(2,2)),((1,1),(2,1),(2,2),(2,3))]]
#arena variables
num_line=20
num_col=10
pix_width=width_one*num_col+2
pix_height=width_one*num_line+2
arena=[-1]*(num_line+4)
arena_end=[-1]*(num_col+2)
#colors variables
tetris_col=5
aff_color=tetris_col
bg_color="black"
color=[("orange red","red","dark red"),("light blue","blue","dark blue"),("pale green","light green","dark green"),("light grey","grey","dark grey"),("light yellow","yellow","yellow green"),("PeachPuff1","PeachPuff2","PeachPuff3"),("chocolate1","chocolate2","chocolate3"),(bg_color,bg_color,bg_color)]
#file d'attente
Q=[]
############################################################################################################################################
# DEF
############################################################################################################################################
#affiche/efface un tetris
def draw_tetris(action):
if action=='trace':
couleur=aff_color
if action=='efface':
couleur=7
for offset_x, offset_y in tetris[tetris_num][tetris_rot]:
f=0
x1=(x_cur+offset_x)*width_one+1
y1=(y_cur+offset_y)*width_one+(width_one/2)+1
y2=(y_cur+offset_y)*width_one+width_one
col1,col2,col3 = color[couleur]
tab.create_line(x1,y1,x1+width_one,y1,width=width_one,fill=col1)
while f < width_one :
tab.create_line(x1+f,y2-f,x1+width_one,y2-f,width=1,fill=col3)
f=f+1
tab.create_line(x1+width_one/4,y1,x1+width_one-width_one/4,y1,width=width_one/2,fill=col2)
return
#teste la possibilite d'afficher le tetris
def test(x_test,y_test,tetris_num_test,tetris_rot_test):
aaa=""
for offset_x, offset_y in tetris[tetris_num_test][tetris_rot_test]:
x1=(x_test+offset_x)
y1=(y_test+offset_y)
if arena[y1+4][x1+1] < 7:
return "impossible"
return "possible"
#pose le tetris dans arena
def put_tetris():
s=0
for offset_x, offset_y in tetris[tetris_num][tetris_rot]:
s=s+1
x1=(x_cur+offset_x)
y1=(y_cur+offset_y)
arena[y1+4][x1+1]=tetris_col
return
#deplace le tetris
def move(new_x,new_y,new_tetris,new_rot):
global x_cur, y_cur, num_tetris, num_rot
draw_tetris('efface')
x_cur,y_cur,num_tetris,num_rot=new_x,new_y,new_tetris,new_rot
draw_tetris('trace')
return
#vers le bas
def down_move():
global Q
if test(x_cur,y_cur+1,tetris_num,tetris_rot)=="possible":
move(x_cur,y_cur+1,tetris_num,tetris_rot)
del(Q[0])
elif test(x_cur,y_cur+1,tetris_num,tetris_rot)=="impossible":
put_tetris()
Q=["next"]
return
#vers la gauche
def left_move():
if test(x_cur-1,y_cur,tetris_num,tetris_rot)=="possible":
move(x_cur-1,y_cur,tetris_num,tetris_rot)
del(Q[0])
return
#vers la droite
def right_move():
if test(x_cur+1,y_cur,tetris_num,tetris_rot)=="possible":
move(x_cur+1,y_cur,tetris_num,tetris_rot)
del(Q[0])
return
#rotation
def rotate_up():
global tetris_rot
if test(x_cur,y_cur,tetris_num,(tetris_rot+1)%4)=="possible":
draw_tetris("efface")
tetris_rot=(tetris_rot+1)%4
draw_tetris("trace")
del(Q[0])
return
#rotation
def rotate_down():
global tetris_rot
if test(x_cur,y_cur,tetris_num,(tetris_rot-1)%4)=="possible":
draw_tetris("efface")
tetris_rot=(tetris_rot-1)%4
draw_tetris("trace")
del(Q[0])
return
#gestion des touches clavier
def Q_left(key):
if len(Q) > 1:
Q.insert(1,"left")
else:
Q.append("left")
return
def Q_right(key):
if len(Q) > 1:
Q.insert(1,"right")
else:
Q.append("right")
return
def Q_up(key):
if len(Q) > 1:
Q.insert(1,"r_up")
else:
Q.append("r_up")
return
def Q_down(key):
if len(Q) > 1:
Q.insert(1,"r_down")
else:
Q.append("r_down")
return
def Q_space(key):
if len(Q) > 1:
Q.insert(1,"down")
else:
Q.append("down")
return
#temporisation a l'arrache
def timing():
global w
while w==1:
a=len(Q)
if a==0:
Q.append("down")
elif Q[a-1]=="down":
pass
else:
Q.append("down")
sleep(laps)
return
#redessine le tableau (pas fini)
def update_arena():
x=0
while x < num_line+4:
line="complete"
for m in arena[x]:
if m > 6 :
line="incomplete"
if line=="complete":
del(arena[x])
arena.insert(0,[-1]+[7]*num_col+[-1])
x=x+1
retrace_arena()
return
def retrace_arena():
xx=0
while xx < num_line+4:
yy=1
while yy < num_col+1:
ra_color=arena[xx][yy]
if ra_color > 7:
ra_color = ra_color-8
trace_one(yy-1,xx-4,ra_color)
yy=yy+1
xx=xx+1
return
#dessine un carre
def trace_one(x,y,couleur):
f=0
x1=x*width_one+1
y1=y*width_one+(width_one/2)+1
y2=y*width_one+width_one
col1,col2,col3 = color[couleur]
tab.create_line(x1,y1,x1+width_one,y1,width=width_one,fill=col1)
while f < width_one :
tab.create_line(x1+f,y2-f,x1+width_one,y2-f,width=1,fill=col3)
f=f+1
tab.create_line(x1+width_one/4,y1,x1+width_one-width_one/4,y1,width=width_one/2,fill=col2)
return
############################################################################################################################################
# CORPS
############################################################################################################################################
#initialize arena
count=num_line+3
while count >= 0:
arena[count]=[-1]+[7]*num_col+[-1]
count=count-1
arena.append(arena_end)
#initialize tab
from Tkinter import *
from threading import *
from time import *
from random import *
tab=Canvas(bg=bg_color,height=pix_height,width=pix_width)
tab.pack()
w=1
tab.bind_all('<Left>',Q_left)
tab.bind_all('<Right>',Q_right)
tab.bind_all('<Up>',Q_up)
tab.bind_all('<Down>',Q_down)
tab.bind_all('<space>',Q_space)
tab.update()
k=Thread(None,timing,None)
k.start()
h=0
#test
while test(3,-4,tetris_num,tetris_rot)=="possible":
h=h+1
Q=[]
tetris_num=randrange(7)
aff_color=randrange(7)
fantome=randrange(10)
if fantome==0:#enlever le commentaire denant +8 pour activer les tetris fantomes
tetris_col=aff_color#+8
else:
tetris_col=aff_color
tetris_rot=randrange(4)
x_cur,y_cur=3,-4
while len(Q)==0:
pass
while Q[0] != "next":
if Q[0]=="null":
del(Q[0])
elif Q[0]=="down":
down_move()
elif Q[0]=="left":
left_move()
elif Q[0]=="right":
right_move()
elif Q[0]=="r_up":
rotate_up()
elif Q[0]=="r_down":
rotate_down()
print Q,h
tab.update()
if len(Q)==0 :
Q.append("null")
update_arena()
w=0 |
Partager