Puisque j'en ai parlé précédement, je le poste.

Laplace-Beltrami operator (http://en.wikipedia.org/wiki/Laplacian)

Anisotropic Feature-Preserving Denoising of Height Fields and Bivariate Data (www.multires.caltech.edu/pubs/gi2000.pdf)


Code : Sélectionner tout - Visualiser dans une fenêtre à part
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
 
import ij.IJ;
import ij.ImagePlus;
import ij.gui.GenericDialog;
import ij.plugin.filter.PlugInFilter;
import ij.process.ByteProcessor;
import ij.process.ColorProcessor;
import ij.process.ImageProcessor;
 
import java.awt.Color;
 
/**
 * @author Xavier Philippeau
 * 
 * LaplaceBeltrami Plugin. 
 *
 * Anisotropic Feature-Preserving Denoising using the Laplace-Beltrami operator
 */
public class LaplaceBeltrami_ implements PlugInFilter {
 
	private ImagePlus imgOrig = null;
	private int itermax = 0;
	private boolean autostop=false;
	private double step=0;
 
	/**
	* This method gets a reference to the image to be locally ranked
	* and returns the filter capabilities.
	* @param	arg	calls for the "about" information.
	* @param	imp	This is the image to be processed
	*
	* @return	Returns DOES_8G + DOES_RGB or DONE.
	*/
	public int setup(String arg, ImagePlus imp) {
 
		// about...
		if (arg.equals("about")) {
			showAbout(); 
			return DONE;
		}
 
		// else...
		if (imp==null) return DONE;
 
		//original image
		this.imgOrig = imp ;
 
		// Configuration dialog.
		GenericDialog gd = new GenericDialog("Parameters");
		gd.addNumericField("Integration step",0.1,1);
		gd.addNumericField("Iterations (-1: auto)",-1,0);
 
		while(true) {
			gd.showDialog();
			if ( gd.wasCanceled() )	return DONE;
 
 
			this.step = (double) gd.getNextNumber();
			this.itermax = (int) gd.getNextNumber();
 
			if (this.step<=0) continue;
			if (this.itermax<-1) continue;
			break;
		}
		gd.dispose();
 
		if (this.itermax==-1) {
			this.autostop = true;
			this.itermax=Integer.MAX_VALUE;
		}
 
		return DOES_8G+DOES_RGB;
	}
 
	/** 
	 * Filters use this method to process the image. If the
	 * SUPPORTS_STACKS flag was set, it is called for each slice in
	 * a stack. ImageJ will lock the image before calling
	 * this method and unlock it when the filter is finished. 
	 */
	public void run(ImageProcessor ip) {
		// project image to HSV color space
		ByteProcessor work = null;
		if (this.imgOrig.getBitDepth()==24) work=transformRGB(this.imgOrig);
		if (this.imgOrig.getBitDepth()==8) work=transformGray(this.imgOrig);
 
		// show new image		
		ImagePlus newImg = new ImagePlus(this.imgOrig.getTitle()+"_LaplaceBeltrami", this.imgOrig.getProcessor());
		newImg.show();
 
		// filter
		ByteProcessor previous = work;
		int previousdiff = Integer.MAX_VALUE;
		for(int i=0;i<this.itermax;i++) {
			IJ.showProgress((float)i/this.itermax);
			IJ.showStatus("Iteration: "+i);
 
			// compute one step
			work = LaplaceBeltramiFilter(work,this.step);
 
			// project image to RGB color space
			ImageProcessor newIp = null;
			if (this.imgOrig.getBitDepth()==24) newIp=invTransformRGB(this.imgOrig,work);
			if (this.imgOrig.getBitDepth()==8) newIp=invTransformGray(this.imgOrig,work);
			newImg.setProcessor(null,newIp);
			newImg.updateAndDraw();
 
			// auto exit at idempotence
			if (this.autostop) {
				int diff=compare(work,previous);
		    	if (diff<=0) break;
		    	int rate = (previousdiff-diff);
		    	if (rate<=0) {
		    		this.itermax = this.itermax+1;
		    	} else {
		    		this.itermax = i+2+diff/rate;
		    	}
		    	previousdiff=diff;
		    	previous=work;
		    }
		}
		IJ.showStatus("Done");
		IJ.showProgress(0);
	}
 
	// RGB -> HSV
	private ByteProcessor transformRGB(ImagePlus img) {
		ByteProcessor bp = new ByteProcessor(img.getWidth(),img.getHeight());
		for (int y = 0; y < img.getHeight(); y++) {
			for (int x = 0; x < img.getWidth(); x++) {
				int[] lrgb = img.getPixel(x,y);
				float[] hsb = Color.RGBtoHSB(lrgb[0],lrgb[1],lrgb[2],null);
				bp.set(x,y,(int)(hsb[2]*255));
			}
		}
		return bp;
	}
 
	// GRAY -> HSV
	private ByteProcessor transformGray(ImagePlus img) {
		ByteProcessor bp = new ByteProcessor(img.getWidth(),img.getHeight());
		for (int y = 0; y < img.getHeight(); y++) {
			for (int x = 0; x < img.getWidth(); x++) {
				int[] lrgb = img.getPixel(x,y);
				bp.set(x,y,lrgb[0]);
			}
		}
		return bp;
	}
 
	// HSV -> RGB
	private ImageProcessor invTransformRGB(ImagePlus img, ByteProcessor bp) {
		ImageProcessor out = new ColorProcessor(img.getWidth(),img.getHeight());
		for (int y = 0; y < img.getHeight(); y++) {
			for (int x = 0; x < img.getWidth(); x++) {
				int[] lrgb = img.getPixel(x,y);
				float[] hsb = Color.RGBtoHSB(lrgb[0],lrgb[1],lrgb[2],null);
				int rgb = Color.HSBtoRGB(hsb[0],hsb[1],bp.get(x,y)/255f);
				out.set(x,y,rgb);
			}
		}
		return out;
	}
 
	// HSV -> GRAY
	private ImageProcessor invTransformGray(ImagePlus img, ByteProcessor bp) {
		ImageProcessor out = new ByteProcessor(img.getWidth(),img.getHeight());
		for (int y = 0; y < img.getHeight(); y++) {
			for (int x = 0; x < img.getWidth(); x++) {
				out.set(x,y,bp.get(x,y));
			}
		}
		return out;
	}
 
	// About...
	private void showAbout() {
		IJ.showMessage("Laplace-Beltrami...","Laplace-Beltrami Filter by Pseudocode");
	}
 
	// Compare two images
	private int compare(ByteProcessor c,ByteProcessor c1) {
		int diff=0;
		for (int y=0;y<c.getHeight();y++) {
			for (int x=0;x<c.getWidth();x++) {
				if (Math.abs(c.get(x,y)-c1.get(x,y))>0) diff++;
			}
		}
		return diff;
	}
 
	// compute cotangent of the 2 vectors u and v
	private double cotangent(int ux,int uy,int uz, int vx,int vy,int vz) {
		double uv  = ux*vx + uy*vy + uz*vz;
 
		int vpx = uz*vy - uy*vz;
		int vpy = ux*vz - uz*vx;
		int vpz = ux*vy - uy*vx;
		double vp = Math.sqrt( vpx*vpx + vpy*vpy + vpz*vpz );
		if (vp==0) return Double.MAX_VALUE;
 
		return Math.abs(uv)/vp;
	}
 
	// compute area of a 3D triangle
	private double area(int xa,int ya,int va,int xb,int yb,int vb,int xc,int yc,int vc) {
		int ux = xa-xb;
		int uy = ya-yb;
		int uz = va-vb;
 
		int vx = xc-xb;
		int vy = yc-yb;
		int vz = vc-vb;
 
		int vpx = uz*vy - uy*vz;
		int vpy = ux*vz - uz*vx;
		int vpz = ux*vy - uy*vx;
 
		double area = Math.sqrt(vpx*vpx + vpy*vpy + vpz*vpz)/2;
		return area;
	}
 
	// Laplace-Beltrami operator (divergence of the gradient) 
	public ByteProcessor LaplaceBeltramiFilter(ByteProcessor c, double dt) {
		int width = c.getWidth();
		int height = c.getHeight();
 
		int n=8;
		int[] dx = new int[] {-1,0,1,1,1,0,-1,-1};
		int[] dy = new int[] {-1,-1,-1,0,1,1,1,0};
 
		ByteProcessor c2 = new ByteProcessor(width,height);
 
		// For each pixel of the image
		for (int y=0; y<height; y++) {
			for (int x=0; x<width; x++) {
 
				int z = c.get(x, y);
				c2.set(x, y, z);
 
				// Laplace-Beltrami Operator
				// -------------------------
				//
				// L[i] = 1/2A * Sum[ ( cotan(Alphaij) + cotan(Betaij) ) * ( V(j) - V(i) )  ]
				//               j in N(i)
				//
				// V(x): Value (intensity,height) of pixel x
				// N(x) : neighboors of pixel x
				// A : Global Area (sum) of surrounding triangles
				// Alphaij, Betaij : Opposite angles of triangles containing the edge (i,j)
				//
				double laplace=0; double area=0;
				for(int i=0;i<n;i++) {
 
					// previous vertex
					int xp = x+dx[(i+n-1) % n]; 
					if (xp<0 || xp>=width) continue;
					int yp = y+dy[(i+n-1) % n]; 
					if (yp<0 || yp>=height) continue;
					int zp = c.get(xp, yp);
 
					// actual vertex
					int xk = x+dx[i]; 
					if (xk<0 || xk>=width) continue;
					int yk = y+dy[i];
					if (yk<0 || yk>=height) continue;
					int zk = c.get(xk, yk);
 
					// next vertex
					int xn = x+dx[(i+1) % n]; 
					if (xn<0 || xn>=width) continue;
					int yn = y+dy[(i+1) % n];
					if (yn<0 || yn>=height) continue;
					int zn = c.get(xn, yn);
 
					// cotangent of opposite angles of the 2 triangles
					double cotgt_alpha = cotangent(x-xp,y-yp,z-zp, xk-xp,yk-yp,zk-zp);
					double cotgt_beta  = cotangent(x-xn,y-yn,z-zn, xk-xn,yk-yn,zk-zn);
 
					// area of the 2 triangles
					double area_alpha = area(x,y,z, xp,yp,zp, xk,yk,zk);
					double area_beta = area(x,y,z, xn,yn,zn, xk,yk,zk);
 
					// addd to iteration variable
					laplace += (cotgt_alpha+cotgt_beta)*(zk-z);
					area += area_alpha+area_beta;
				}
				laplace/=2*area;
 
				// Compute new value:
				//
				// dI/dt ~= ( I(t+dt) - I(t) )  / dt
				// ==> I(t+dt) ~= I(t) + dt * (dI/dt) ~= I(t) + dt * L[I(t)]
 
				int v=(int)Math.rint( c.get(x, y) + dt*laplace );
				if (v<0) v=0;
				if (v>255) v=255;
				c2.set(x, y, v);
			}
		}
 
		return c2;
	}
}
PRomu@ld : sources