IdentifiantMot de passe
Loading...
Mot de passe oublié ?Je m'inscris ! (gratuit)
Navigation

Inscrivez-vous gratuitement
pour pouvoir participer, suivre les réponses en temps réel, voter pour les messages, poser vos propres questions et recevoir la newsletter

Calcul scientifique Python Discussion :

Résolution d'équation différentielle sous python pour modéliser une trajectoire


Sujet :

Calcul scientifique Python

Vue hybride

Message précédent Message précédent   Message suivant Message suivant
  1. #1
    Nouveau candidat au Club
    Homme Profil pro
    Étudiant
    Inscrit en
    Mai 2022
    Messages
    1
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : France, Bas Rhin (Alsace)

    Informations professionnelles :
    Activité : Étudiant

    Informations forums :
    Inscription : Mai 2022
    Messages : 1
    Par défaut Résolution d'équation différentielle sous python pour modéliser une trajectoire
    Bonjour, je suis actuellement étudiant en prépa MP et je rencontre des problèmes sur mon TIPE. J'ai pour but de modéliser la trajectoire d'astéroïdes sous python. J'ai déjà réussi pour une modélisation assez simple en utilisant la méthode de runge kutta 4. Nom : exemple mon code.PNG
Affichages : 502
Taille : 38,9 Ko Nom : exemple model.PNG
Affichages : 485
Taille : 20,1 Ko. Voici mon premier code pour vous donner une idée de mon niveau si cela peut vous aider( Je sais que ce n'est pas très compact mais je ne m'intéresse pas à ca pour l'instant).

    J'ai voulu alors modéliser mon problème d'une manière plus compliquée en prenant en compte l'action de certaines autres planètes sur mon astéroïde. En réutilisant la méthode de runge kutta comme avant je fais face à un problème. J'ai pris en compte l'action de la Terre, Jupiter et Saturne ensemble. Je veux d'abord pouvoir représenter comme sur la deuxième photo leurs trajectoires en 3D. Mon problème est que dans ce modèle mes équations sont couplées et je n'arrive pas à écrire un programme sur la méthode de runge kutta qui me permet d'obtenir leurs positions comme sur la première photo. Auriez vous une piste pour m'aider ?

  2. #2
    Membre Expert

    Homme Profil pro
    Ingénieur calcul scientifique
    Inscrit en
    Mars 2013
    Messages
    1 229
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : France, Alpes Maritimes (Provence Alpes Côte d'Azur)

    Informations professionnelles :
    Activité : Ingénieur calcul scientifique

    Informations forums :
    Inscription : Mars 2013
    Messages : 1 229
    Par défaut
    Que vous ayez une ou plusieurs planètes ne changent pas la forme général du problème. Simplement il ne faut pas voir cela comme 3 trajectoires couplées, mais comme un seul modèle contenant les 3 trajectoires.
    Là vous avez xT,yT,zT, uxT, uyT, uzT (T pour terre je présume). Si je rajoute la lune, et bien vous aurez non plus 6 variables mais 12 : xT,yT,zT, uxT, uyT, uzT, xL,yL,zL, uxL, uyL, uzL. Et vous pourrez exprimer la dérivée de n'importe laquelle de ces variables en fonctions de ces 12 là.

Discussions similaires

  1. Réponses: 1
    Dernier message: 03/02/2017, 15h17
  2. Résolution d'équations différentielles 3ème ordre ?
    Par MaryAnN76 dans le forum MATLAB
    Réponses: 6
    Dernier message: 09/10/2007, 16h09
  3. Résolution d'équations différentielles couplées
    Par DVD-RW dans le forum MATLAB
    Réponses: 4
    Dernier message: 05/06/2007, 19h47
  4. Réponses: 2
    Dernier message: 05/05/2007, 18h22

Partager

Partager
  • Envoyer la discussion sur Viadeo
  • Envoyer la discussion sur Twitter
  • Envoyer la discussion sur Google
  • Envoyer la discussion sur Facebook
  • Envoyer la discussion sur Digg
  • Envoyer la discussion sur Delicious
  • Envoyer la discussion sur MySpace
  • Envoyer la discussion sur Yahoo