Bonjour à tous,

J'essaye de simuler un réseau de neurones, et pour ça j'ai un objet Axon qui contient une liste de Receiver à activer. Mon problème c'est que la classe Axon implémente des itérateurs pour se ballader dans la liste de receiver. Or, quand je parcours l'ensemble des données à l'aide de begin() et end() (Par exemple dans la fonction disconnect()), je vais toujours "une case trop loin", et tout plante. Je n'arrive pas à comprendre pourquoi je ne détecte pas la fin du tableau, donc si quelqu'un avait l'explication...

Merci pour votre attention

PS : Si vous avez des remarques sur des choses que j'aurais mal faites dans le code je prends aussi, je ne suis entre autre pas sûr à 300% de mon système d'allocations dynamiques...

Code : Sélectionner tout - Visualiser dans une fenêtre à part
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
#include <vector>
#include <iostream>
 
class Neuron
{
 
};
 
class Receiver
{
public:
    Neuron& n;
    Receiver(Neuron &nm) : n(nm) {  }
 
    Neuron& getNeuron(void) {
        return n;
    }
 
    void receive(void) {}
};
 
template<typename _Alloc = std::allocator<Receiver *>>
class Axon
{
private:
	typedef std::allocator_traits<_Alloc> _Alloc_traits;
    _Alloc m_allocator;
 
public:
	typedef typename _Alloc_traits::allocator_type allocator_type;
	typedef typename _Alloc_traits::value_type value_type;
	typedef typename _Alloc_traits::pointer pointer;
	typedef typename _Alloc_traits::const_pointer const_pointer;
	typedef typename _Alloc_traits::value_type& reference;
	typedef typename const _Alloc_traits::value_type& const_reference;
	typedef typename _Alloc_traits::size_type size_type;
 
    /*! Axon iterator. */
	class iterator
	{
	public:
		typedef typename _Alloc_traits::allocator_type allocator_type;
		typedef typename _Alloc_traits::value_type value_type;
		typedef typename _Alloc_traits::pointer pointer;
		typedef typename _Alloc_traits::const_pointer const_pointer;
        typedef typename _Alloc_traits::value_type& reference;
        typedef typename const _Alloc_traits::value_type& const_reference;
		typedef typename _Alloc_traits::size_type size_type;
		typedef std::random_access_iterator_tag iterator_category;
 
        iterator(pointer ptr) : m_ptr(ptr) { }
        iterator(const iterator& it) = default;
        ~iterator(void) = default;
 
        iterator& operator=(const iterator& it) = default;
        bool operator==(const iterator& it) const {
            return (m_ptr == it.m_ptr);
        }
        bool operator!=(const iterator& it) const {
            return (m_ptr != it.m_ptr);
        }
 
        iterator& operator++() {
            ++m_ptr;
            return *this;
        }
		iterator& operator++(int) {
            iterator tmp = *this;
            ++(*this);
            return tmp;
		}
		iterator& operator--() {
			--m_ptr;
			return *this;
		}
		iterator& operator--(int) {
			iterator tmp = *this;
			--(*this);
			return tmp;
		}
 
        reference operator*() const {
            return *m_ptr;
        }
        pointer operator->() const {
            return m_ptr;
        }
 
	private:
        pointer m_ptr;
	};
 
	/*! Axon const iterator. */
	class const_iterator
	{
	public:
		typedef typename _Alloc_traits::allocator_type allocator_type;
		typedef typename _Alloc_traits::value_type value_type;
		typedef typename _Alloc_traits::pointer pointer;
		typedef typename _Alloc_traits::const_pointer const_pointer;
		typedef typename _Alloc_traits::value_type& reference;
		typedef typename const _Alloc_traits::value_type& const_reference;
		typedef typename _Alloc_traits::size_type size_type;
		typedef std::random_access_iterator_tag iterator_category;
 
		const_iterator(const_pointer ptr) : m_ptr(ptr) { }
		const_iterator(const const_iterator& it) = default;
        const_iterator(const iterator& it) {
            m_ptr = &(*it);
        }
		~const_iterator(void) = default;
 
        const_iterator& operator=(const const_iterator& it) = default;
        bool operator==(const const_iterator& it) const {
            return (m_ptr == it.m_ptr);
        }
        bool operator!=(const const_iterator& it) const {
            return (m_ptr != it.m_ptr);
        }
 
        const_iterator& operator++() {
			++m_ptr;
			return *this;
        }
        const_iterator operator++(int) {
			const_iterator tmp = *this;
			++(*this);
			return tmp;
        }
        const_iterator& operator--() {
			--m_ptr;
			return *this;
        }
        const_iterator operator--(int) {
			const_iterator tmp = *this;
			--(*this);
			return tmp;
        }
 
        const_reference operator*() const {
            return *m_ptr;
        }
        const_pointer operator->() const {
            return m_ptr;
        }
 
	private:
		const_pointer m_ptr;
	};
 
 
 
 
 
 
 
 
 
    /*!
     * \brief Construct a new Axon object.
     * 
     * \param parent A reference to the 
     *      neuron we are belonging to.
     */
	Axon(Neuron& parent) : m_parent(parent), m_receivers{ 0x0, 0x0, nullptr } {
	}
 
    ~Axon() {
        for (iterator it = begin(); it != end(); ++it) {
            disconnect(it, true);
        }
 
        _Alloc_traits::deallocate(m_allocator, m_receivers.receivers, m_receivers.capacity);
    }
 
    /*!
     * \brief Propagates a nervous influx.
     */
    void propagate(void) const {
        for (const_iterator it = begin(); it != end(); ++it) {
            (*it)->receive();
        }
    }
 
    /*!
     * \brief Binds to a remote receiver.
     *
     * \param receiver The remote receiver to bind to.
     *
     * \return True on success, false on failure.
     */
    bool connect(Receiver& receiver) {
#if defined(__V_CFG_NT_SUPPORT__)
        assert(receiver.getNt() == m_parent.getNt());
#endif /* defined(__V_CFG_NT_SUPPORT__) */
 
        if (m_receivers.capacity <= m_receivers.size) {
            if (!reallocate(m_receivers.size + 1)) {
				return false;
			}
        }
 
        _Alloc_traits::construct(m_allocator, &(*(end())), &receiver);
        ++(m_receivers.size);
 
        return true;
    }
 
    /*!
     * \brief Breaks all connections with the specified neuron.
     *
     * \param neuron The neuron to break with.
     * \param rr Do we have to destruct remote receivers ?
     */
    void disconnect(Neuron& neuron, bool rr = true) {
        for (const_iterator it = begin(); it != end(); ++it) {
            std::cout << &(*it) << " - " << &(*end()) << std::endl;
            if (&((*it)->getNeuron()) == &neuron) {
                (void)(disconnect(it, rr)); /* Overloaded call */
            }
        }
    }
 
 
    iterator disconnect(const_iterator position, bool rr = true) {
        size_type index = -(&(*(begin())) - &(*position));
 
        _Alloc_traits::destroy(m_allocator, &(m_receivers.receivers[index]));
        for (size_type i = index; i < ((m_receivers.size) - 1); ++i) {
            _Alloc_traits::construct(m_allocator, &(m_receivers.receivers[i]), m_receivers.receivers[i + 1]);
            _Alloc_traits::destroy(m_allocator, &(m_receivers.receivers[i + 1]));
        }
 
        --(m_receivers.size);
 
        iterator it = &(m_receivers.receivers[index]);
        return it;
    }
 
    /*
    iterator disconnect(const_iterator first, const_iterator last, bool rr = true) {
 
    }
    */
 
#if defined(__V_CFG_NT_SUPPORT__)
    /*!
     * \brief Retrieves the neurotransmitter associated
     *      with the parent neuron.
     *
     * \return A reference to a neurotransmitter object.
     */
    Neurotransmitter& getNt(void) const {
        return m_parent.getNt();
    }
#endif /* defined(__V_CFG_NT_SUPPORT__) */
 
    /*!
     * \brief Gets the parent neuron.
     *
     * \return A reference to the parent neuron.
     */
    Neuron& getNeuron(void) const {
        return m_parent;
    }
 
    /*!
     * \brief Requests that the capacity
     *      be at least enough to contain n receivers.
     *
     * \param n Minimum capacity for the receivers array.
     *      If n is greater than the current capacity, the
     *      function causes the container to reallocate its
     *      storage increasing its capacity to n (Or greater).
     *      In all other cases, the function call does not
     *      cause a reallocation and the capacity is not
     *      affected.
     *
     * \return True on success, false on failure.
     */
    bool reserve(size_type n) {
        if (n > m_receivers.capacity) {
            if (!reallocate(n)) return false;
        }
 
        m_receivers.capacity = n;
        return true;
    }
 
    /*!
     * \brief Returns the size of the storage space currently
     *      allocated for receivers, expressed in terms
     *      of elements.
     *
     * \return The storage space currently
     *      allocated for receivers.
     */
    size_type capacity(void) const {
        return m_receivers.capacity;
    }
 
    /*!
     * \brief Returns the number of receivers
     *      connected to the axon.
     */
    size_type size(void) const {
        return m_receivers.size;
    }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    iterator begin(void) {
        return iterator(m_receivers.receivers);
    }
 
    const_iterator begin(void) const {
        return const_iterator(m_receivers.receivers);
    }
 
    const_iterator cbegin(void) const {
        return const_iterator(m_receivers.receivers);
    }
 
    iterator end(void) {
        return iterator(m_receivers.receivers + m_receivers.size);
    }
 
    const_iterator end(void) const {
        return const_iterator(m_receivers.receivers + m_receivers.size);
    }
 
    const_iterator cend(void) const {
        return const_iterator(m_receivers.receivers + m_receivers.size);
    }
 
 
 
 
 
private:
    /*!
     * \brief Modify receivers array size.
     *
     * \param new_capacity The new size of the storage array.
     *
     * \return True on success, false on failure.
     */
    bool reallocate(size_type new_capacity) {
        pointer new_array = nullptr;
        try {
            new_array = _Alloc_traits::allocate(m_allocator, new_capacity);
        }
        catch (...) {
            return false;
        }
 
        for (size_type i = 0; i < m_receivers.size; i++) {
            _Alloc_traits::construct(m_allocator, &new_array[i], std::move(m_receivers.receivers[i]));
            _Alloc_traits::destroy(m_allocator, &(m_receivers.receivers[i]));
        }
        _Alloc_traits::deallocate(m_allocator, m_receivers.receivers, m_receivers.capacity);
 
        m_receivers.receivers = new_array;
        m_receivers.capacity = new_capacity;
 
        return true;
    }
 
    /*! The neuron we are belonging to. */
    Neuron& m_parent;
    /*! The receivers array (And its properties). */
    struct {
        size_type size, capacity;
        pointer receivers;
    } m_receivers;
};
 
#include <iostream>
 
int main()
{
    Neuron n;
    Receiver x(n);
	Axon s(n);
    s.connect(x);
    s.connect(x);
    s.connect(x);
    s.connect(x);
    s.connect(x);
 
    s.disconnect(n, true);
 
    /*
    for (Axon<std::allocator<Receiver*>>::iterator it = s.begin(); it != s.end(); ++it) {
        // std::cout << -(&(*(s.begin())) - &(*it)) << std::endl;
    }
    */
 
 
 
    //s.disconnect(n, true);
 
	return 0;
}