salut a tous.

j'ai un programme qui implémente l'arbre de décision, la construction d'arbre en forme string ça marche bien, mais y a un problème lors de l'affichage de l'arbre avec une fonction dotgraph().
pouvez vous m'aider, et merci d'avance.

erreur:
Code : Sélectionner tout - Visualiser dans une fenêtre à part
1
2
3
4
5
 
line 276, in dotgraph
    p_node = dcParent[szSplit]
 
KeyError: '3-PetalLength >= 4.9'
programme:

Code : Sélectionner tout - Visualiser dans une fenêtre à part
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
 
 
import csv
from collections import defaultdict
import pydotplus
 
 
 
 
 
class DecisionTree:
    """Binary tree implementation with true and false branch. """
    def __init__(self, col=-1, value=None, trueBranch=None, falseBranch=None, results=None, summary=None):
        self.col = col
        self.value = value
        self.trueBranch = trueBranch
        self.falseBranch = falseBranch
        self.results = results # None for nodes, not None for leaves
        self.summary = summary
 
 
def divideSet(rows, column, value):
    splittingFunction = None
    if isinstance(value, int) or isinstance(value, float): # for int and float values
        splittingFunction = lambda row : row[column] >= value
    else: # for strings
        splittingFunction = lambda row : row[column] == value
    list1 = [row for row in rows if splittingFunction(row)]
    list2 = [row for row in rows if not splittingFunction(row)]
    return (list1, list2)
 
 
def uniqueCounts(rows):
    results = {}
    for row in rows:
        #response variable is in the last column
        r = row[-1]
        if r not in results: results[r] = 0
        results[r] += 1
    return results
 
 
def entropy(rows):
    from math import log
    log2 = lambda x: log(x)/log(2)
    results = uniqueCounts(rows)
 
    entr = 0.0
    for r in results:
        p = float(results[r])/len(rows)
        entr -= p*log2(p)
    return entr
 
 
def gini(rows):
    total = len(rows)
    counts = uniqueCounts(rows)
    imp = 0.0
 
    for k1 in counts:
        p1 = float(counts[k1])/total
        for k2 in counts:
            if k1 == k2: continue
            p2 = float(counts[k2])/total
            imp += p1*p2
    return imp
 
 
def variance(rows):
    if len(rows) == 0: return 0
    data = [float(row[len(row) - 1]) for row in rows]
    mean = sum(data) / len(data)
 
    variance = sum([(d-mean)**2 for d in data]) / len(data)
    return variance
 
 
def growDecisionTreeFrom(rows, evaluationFunction=entropy):
    """Grows and then returns a binary decision tree.
    evaluationFunction: entropy or gini"""
 
    if len(rows) == 0: return DecisionTree()
    currentScore = evaluationFunction(rows)
 
    bestGain = 0.0
    bestAttribute = None
    bestSets = None
 
    columnCount = len(rows[0]) - 1  # last column is the result/target column
    for col in range(0, columnCount):
        columnValues = [row[col] for row in rows]
 
        #unique values
        lsUnique = list(set(columnValues))
 
        for value in lsUnique:
            (set1, set2) = divideSet(rows, col, value)
 
            # Gain -- Entropy or Gini
            p = float(len(set1)) / len(rows)
            gain = currentScore - p*evaluationFunction(set1) - (1-p)*evaluationFunction(set2)
            if gain>bestGain and len(set1)>0 and len(set2)>0:
                bestGain = gain
                bestAttribute = (col, value)
                bestSets = (set1, set2)
 
    dcY = {'impurity' : '%.3f' % currentScore, 'samples' : '%d' % len(rows)}
    if bestGain > 0:
        trueBranch = growDecisionTreeFrom(bestSets[0], evaluationFunction)
        falseBranch = growDecisionTreeFrom(bestSets[1], evaluationFunction)
        return DecisionTree(col=bestAttribute[0], value=bestAttribute[1], trueBranch=trueBranch,
                            falseBranch=falseBranch, summary=dcY)
    else:
        return DecisionTree(results=uniqueCounts(rows), summary=dcY)
 
 
def prune(tree, minGain, evaluationFunction=entropy, notify=False):
    """Prunes the obtained tree according to the minimal gain (entropy or Gini). """
    # recursive call for each branch
    if tree.trueBranch.results == None: prune(tree.trueBranch, minGain, evaluationFunction, notify)
    if tree.falseBranch.results == None: prune(tree.falseBranch, minGain, evaluationFunction, notify)
 
    # merge leaves (potentionally)
    if tree.trueBranch.results != None and tree.falseBranch.results != None:
        tb, fb = [], []
 
        for v, c in tree.trueBranch.results.items(): tb += [[v]] * c
        for v, c in tree.falseBranch.results.items(): fb += [[v]] * c
 
        p = float(len(tb)) / len(tb + fb)
        delta = evaluationFunction(tb+fb) - p*evaluationFunction(tb) - (1-p)*evaluationFunction(fb)
        if delta < minGain:
            if notify: print('A branch was pruned: gain = %f' % delta)
            tree.trueBranch, tree.falseBranch = None, None
            tree.results = uniqueCounts(tb + fb)
 
 
def classify(observations, tree, dataMissing=False):
    """Classifies the observationss according to the tree.
    dataMissing: true or false if data are missing or not. """
 
    def classifyWithoutMissingData(observations, tree):
        if tree.results != None:  # leaf
            return tree.results
        else:
            v = observations[tree.col]
            branch = None
            if isinstance(v, int) or isinstance(v, float):
                if v >= tree.value: branch = tree.trueBranch
                else: branch = tree.falseBranch
            else:
                if v == tree.value: branch = tree.trueBranch
                else: branch = tree.falseBranch
        return classifyWithoutMissingData(observations, branch)
 
 
    def classifyWithMissingData(observations, tree):
        if tree.results != None:  # leaf
            return tree.results
        else:
            v = observations[tree.col]
            if v == None:
                tr = classifyWithMissingData(observations, tree.trueBranch)
                fr = classifyWithMissingData(observations, tree.falseBranch)
                tcount = sum(tr.values())
                fcount = sum(fr.values())
                tw = float(tcount)/(tcount + fcount)
                fw = float(fcount)/(tcount + fcount)
                result = defaultdict(int) # Problem description: http://blog.ludovf.net/python-collections-defaultdict/
                for k, v in tr.items(): result[k] += v*tw
                for k, v in fr.items(): result[k] += v*fw
                return dict(result)
            else:
                branch = None
                if isinstance(v, int) or isinstance(v, float):
                    if v >= tree.value: branch = tree.trueBranch
                    else: branch = tree.falseBranch
                else:
                    if v == tree.value: branch = tree.trueBranch
                    else: branch = tree.falseBranch
            return classifyWithMissingData(observations, branch)
 
    # function body
    if dataMissing:
        return classifyWithMissingData(observations, tree)
    else:
        return classifyWithoutMissingData(observations, tree)
 
 
def plot(decisionTree):
    """Plots the obtained decision tree. """
    def toString(decisionTree, indent=''):
        if decisionTree.results != None:  # leaf node
            return str(decisionTree.results)
        else:
            szCol = 'Column %s' % decisionTree.col
            if szCol in dcHeadings:
                szCol = dcHeadings[szCol]
            if isinstance(decisionTree.value, int) or isinstance(decisionTree.value, float):
                decision = '%s >= %s?' % (szCol, decisionTree.value)
            else:
                decision = '%s == %s?' % (szCol, decisionTree.value)
            trueBranch = indent + 'yes -> ' + toString(decisionTree.trueBranch, indent + '\t\t')
            falseBranch = indent + 'no  -> ' + toString(decisionTree.falseBranch, indent + '\t\t')
            return (decision + '\n' + trueBranch + '\n' + falseBranch)
 
    print(toString(decisionTree))
 
 
def dotgraph(decisionTree):
    global dcHeadings
    dcNodes = defaultdict(list)
    """Plots the obtained decision tree. """
    def toString(iSplit, decisionTree, bBranch, szParent = "null", indent=''):
        if decisionTree.results != None:  # leaf node
            lsY = []
            for szX, n in decisionTree.results.items():
                    lsY.append('%s:%d' % (szX, n))
            dcY = {"name": "%s" % ', '.join(lsY), "parent" : szParent}
            dcSummary = decisionTree.summary
            dcNodes[iSplit].append(['leaf', dcY['name'], szParent, bBranch, dcSummary['impurity'],
                                    dcSummary['samples']])
            return dcY
        else:
            szCol = 'Column %s' % decisionTree.col
            if szCol in dcHeadings:
                    szCol = dcHeadings[szCol]
            if isinstance(decisionTree.value, int) or isinstance(decisionTree.value, float):
                    decision = '%s >= %s' % (szCol, decisionTree.value)
            else:
                    decision = '%s == %s' % (szCol, decisionTree.value)
            trueBranch = toString(iSplit+1, decisionTree.trueBranch, True, decision, indent + '\t\t')
            falseBranch = toString(iSplit+1, decisionTree.falseBranch, False, decision, indent + '\t\t')
            dcSummary = decisionTree.summary
            dcNodes[iSplit].append([iSplit+1, decision, szParent, bBranch, dcSummary['impurity'],
                                    dcSummary['samples']])
            return
 
    toString(0, decisionTree, None)
    lsDot = ['digraph Tree {',
                'node [shape=box, style="filled, rounded", color="black", fontname=helvetica] ;',
                'edge [fontname=helvetica] ;'
    ]
    i_node = 0
    dcParent = {}
    for nSplit, lsY in dcNodes.items():
        for lsX in lsY:
            iSplit, decision, szParent, bBranch, szImpurity, szSamples =lsX
            if type(iSplit) == int:
                szSplit = '%d-%s' % (iSplit, decision)
                dcParent[szSplit] = i_node
                lsDot.append('%d [label=<%s<br/>impurity %s<br/>samples %s>, fillcolor="#e5813900"] ;' % (i_node,
                                        decision.replace('>=', '&ge;').replace('?', ''),
                                        szImpurity,
                                        szSamples))
            else:
                lsDot.append('%d [label=<impurity %s<br/>samples %s<br/>class %s>, fillcolor="#e5813900"] ;' % (i_node,
                                        szImpurity,
                                        szSamples,
                                        decision))
 
            if szParent != 'null':
                if bBranch:
                    szAngle = '45'
                    szHeadLabel = 'True'
                else:
                    szAngle = '-45'
                    szHeadLabel = 'False'
                szSplit = '%d-%s' % (nSplit, szParent)
                p_node = dcParent[szSplit]
                if nSplit == 1:
                    lsDot.append('%d -> %d [labeldistance=2.5, labelangle=%s, headlabel="%s"] ;' % (p_node,
                                                        i_node, szAngle, szHeadLabel))
                else:
                    lsDot.append('%d -> %d ;' % (p_node, i_node))
            i_node += 1
    lsDot.append('}')
    dot_data = '\n'.join(lsDot)
    return dot_data
 
 
def loadCSV(file):
    """Loads a CSV file and converts all floats and ints into basic datatypes."""
    def convertTypes(s):
        s = s.strip()
        try:
            return float(s) if '.' in s else int(s)
        except ValueError:
            return s
 
    reader = csv.reader(open(file, 'rt'))
    dcHeader = {}
    if bHeader:
        lsHeader = next(reader)
        for i, szY in enumerate(lsHeader):
                szCol = 'Column %d' % i
                dcHeader[szCol] = str(szY)
    return dcHeader, [[convertTypes(item) for item in row] for row in reader]
 
 
if __name__ == '__main__':
 
    # Select the example you want to classify
    example = 2
 
    # All examples do the following steps:
    #   1. Load training data
    #   2. Let the decision tree grow
    #   4. Plot the decision tree
    #   5. classify without missing data
    #   6. Classifiy with missing data
    #   (7.) Prune the decision tree according to a minimal gain level
    #   (8.) Plot the pruned tree
 
    if example == 1:
        # the smaller examples
        bHeader = False
        dcHeadings, trainingData = loadCSV('tbc.csv') # sorry for not translating the TBC and pneumonia symptoms
        decisionTree = growDecisionTreeFrom(trainingData)
        #decisionTree = growDecisionTreeFrom(trainingData, evaluationFunction=gini) # with gini
        result = plot(decisionTree)
        print(result)
        dot_data = dotgraph(decisionTree)
        graph = pydotplus.graph_from_dot_data(dot_data)
        graph.write_pdf("tbc.pdf")
        graph.write_png("tbc.png")
 
        print(classify(['ohne', 'leicht', 'Streifen', 'normal', 'normal'], decisionTree, dataMissing=False))
        print(classify([None, 'leicht', None, 'Flocken', 'fiepend'], decisionTree, dataMissing=True)) # no longer unique
 
        # Don' forget if you compare the resulting tree with the tree in my presentation: here it is a binary tree!
 
    else:
        bHeader = True
        # the bigger example
        dcHeadings, trainingData = loadCSV('fishiris.csv') # demo data from matlab
        decisionTree = growDecisionTreeFrom(trainingData, evaluationFunction=gini)
        prune(decisionTree, 0.8, notify=True) # notify, when a branch is pruned (one time in this example)
        result = plot(decisionTree)
        print(result)
        dot_data = dotgraph(decisionTree)
        graph = pydotplus.graph_from_dot_data(dot_data)
        graph.write_pdf("iris.pdf")
        graph.write_png("iris.png")
 
        print(classify([6.0, 2.2, 5.0, 1.5], decisionTree)) # dataMissing=False is the default setting
        print(classify([None, None, None, 1.5], decisionTree, dataMissing=True)) # no longer unique

data:

fishiris.zip