1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
| id = 0
imgs_to_process = np.load(output_path+'fullimages_{}.npy'.format(id))
def resample(image, scan, new_spacing=[1,1,1]):
# Determine current pixel spacing
spacing = map(float, ([scan[0].SliceThickness] + scan[0].PixelSpacing))
spacing = np.array(list(spacing))
resize_factor = spacing / new_spacing
new_real_shape = image.shape * resize_factor
new_shape = np.round(new_real_shape)
real_resize_factor = new_shape / image.shape
new_spacing = spacing / real_resize_factor
image = scipy.ndimage.interpolation.zoom(image, real_resize_factor)
return image, new_spacing
print "Shape before resampling\t", imgs_to_process.shape
imgs_after_resamp, spacing = resample(imgs_to_process, patient, [1,1,1])
print "Shape after resampling\t", imgs_after_resamp.shape |
Partager