1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
//Algorithme
void algo_approx(IplImage* im,IplImage* blur_image,double sigma1)
{
IplImage* buffer=cvCreateImage(cvSize(im->width,im->height), IPL_DEPTH_32F,1);
cvCopy(im,buffer);
int N_iteration =6;
int m_itération_inf;
float W=sqrt(sigma1*sigma1*12/N_iteration+1);
int wl = floor(W);
if(!(wl%2))wl-=1;
int wu = wl+2;
m_itération_inf=(12*sigma1*sigma1-N_iteration*wl*wl-4*wl*N_iteration-3*N_iteration)/(-4*wl-4);
int i;
for(i=0;i<m_itération_inf;i++)
{
filtre_moyenne(buffer,blur_image,wu);
cvCopy(blur_image,buffer);
}
int end= N_iteration-m_itération_inf;
for(i=0;i<end;i++)
{
filtre_moyenne(buffer,blur_image,wu);
cvCopy(blur_image,buffer);
}
cvReleaseImage(&buffer);
}
//utilisation de la méthode par image intégrale
void filtre_moyenne(IplImage* im,IplImage *buffer,int W)//W impaire !!
{
int border = (W-1)/2.0;
IplImage* im_border;
im_border = cvCreateImage(cvSize(im->width+(W-1),im->height+(W-1)), IPL_DEPTH_32F, 1);
cvCopyMakeBorder(im,im_border, cvPoint(border,border), IPL_BORDER_REPLICATE);
IplImage* integral=cvCreateImage(cvGetSize(im_border), IPL_DEPTH_32F, 1);
Integral(im_border,integral);
cvZero(buffer);
float * F_ptr_A;
float * F_ptr_B;
float * F_ptr_C;
float * F_ptr_D;
float * F_ptrL;
float A,B,C,D;
float S=0.0f;
for (int y = 0; y < buffer->height; y++) //mettre les pointeurs dans la boucle
{
F_ptr_A = (float *) (integral->imageData + (integral->widthStep*y));
F_ptr_B = (float *) (integral->imageData + (integral->widthStep*(y+W-1)));
F_ptr_C = (float *) (integral->imageData + (integral->widthStep*y));
F_ptr_C+=W-1;
F_ptr_D = (float *) (integral->imageData + (integral->widthStep*(y+W-1)));
F_ptr_D+=W-1;
F_ptrL= (float *) (buffer->imageData+ buffer->widthStep*y);
for (int x = 0; x < buffer->width; x++)
{
A= (*F_ptr_A);
B= (*F_ptr_B);
C= (*F_ptr_C);
D= (*F_ptr_D);
S=A+D-B-C;
F_ptr_A++;
F_ptr_B++;
F_ptr_C++;
F_ptr_D++;
*F_ptrL =S/(W*W);
F_ptrL++;
}
}
cvReleaseImage(&integral);
cvReleaseImage(&im_border);
}
//calcul de l'image intégrale
void Integral(IplImage *img,IplImage *integral)
{
// image : single channel 32f
// set up variables for data access
int height = img->height;
int width = img->width;
int step = img->widthStep/sizeof(float);
float *data = (float *) img->imageData;
float *i_data = (float *) integral->imageData;
// first row only
float rs = 0.0f;
for(int j=0; j<width; j++)
{
rs += data[j];
i_data[j] = rs;
}
// remaining cells are sum above and to the left
for(int i=1; i<height; ++i) //utilisation de pointeurs
{
rs = 0.0f;
for(int j=0; j<width; ++j)
{
rs += data[i*step+j];
i_data[i*step+j] = rs + i_data[(i-1)*step+j];
}
}
} |
Partager