1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
|
% Normalisation des fonctions de base w0 par l'algorithme de Gramm Shmidt%
w0carre=w0.^2;
%Norme w0%
for i=1:n;
w0int(i)=trapz(0:dx:1,w0carre(i,:));
Normw0(i)=sqrt(w0int(i));
end
%Orthonormalisation%
for kk=1:length(x);
w0n(1,kk)=w0(1,kk)/Normw0(1); %w0n(1,:) normalisé%
end
for kk=1:length(x);
Provis21n(kk)=w0n(1,kk)*w0(2,kk);
end
ALPHA21n=trapz(0:dx:1,Provis21n);
for kk=1:length(x);
w02nn(2,kk)=w0(2,kk)-(ALPHA21n*w0n(1,kk));
w0n(2,kk)= w02nn(2,kk)/Normw0(2); %w0n(2,:) normalisé%
end
for kk=1:length(x);
Provis31n(kk)=w0n(1,kk)*w0(3,kk);
Provis32n(kk)=w0n(2,kk)*w0(3,kk);
end
ALPHA31n=trapz(0:dx:1,Provis31n);
ALPHA32n=trapz(0:dx:1,Provis32n);
for kk=1:length(x);
w03nn(3,kk)=w0(3,kk)-(ALPHA31n*w0n(1,kk))-(ALPHA32n*w0n(2,kk));
w0n(3,kk)= w03nn(3,kk)/Normw0(3); %w0n(3,:) normalisé%
end
for kk=1:length(x);
Provis41n(kk)=w0n(1,kk)*w0(4,kk);
Provis42n(kk)=w0n(2,kk)*w0(4,kk);
Provis43n(kk)=w0n(3,kk)*w0(4,kk);
end
ALPHA41n=trapz(0:dx:1,Provis41n);
ALPHA42n=trapz(0:dx:1,Provis42n);
ALPHA43n=trapz(0:dx:1,Provis43n);
for kk=1:length(x);
w04nn(4,kk)=w0(4,kk)-(ALPHA41n*w0n(1,kk))-(ALPHA42n*w0n(2,kk))-(ALPHA43n*w0n(3,kk));
w0n(4,kk)= w04nn(4,kk)/Normw0(4); %w0n(4,:) normalisé%
end
for kk=1:length(x);
Provis51n(kk)=w0n(1,kk)*w0(5,kk);
Provis52n(kk)=w0n(2,kk)*w0(5,kk);
Provis53n(kk)=w0n(3,kk)*w0(5,kk);
Provis54n(kk)=w0n(4,kk)*w0(5,kk);
end
ALPHA51n=trapz(0:dx:1,Provis51n);
ALPHA52n=trapz(0:dx:1,Provis52n);
ALPHA53n=trapz(0:dx:1,Provis53n);
ALPHA54n=trapz(0:dx:1,Provis54n);
for kk=1:length(x);
w05nn(5,kk)=w0(5,kk)-(ALPHA51n*w0n(1,kk))-(ALPHA52n*w0n(2,kk))-(ALPHA53n*w0n(3,kk))-(ALPHA54n*w0n(4,kk));
w0n(5,kk)= w04nn(4,kk)/Normw0(5); %w0n(5,:) normalisé%
end |
Partager