1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
| #Docs {{{1
'''
__name__ = net_talk
__author__ = N.tox
__version__ = 1.1
net_talk module aim to facilitate the design process of a coded language
beetween two computer for networking.
It has nothing to do with protocols.
Often, when clients and server communicate, as they can only exchange text,
there is a need to use the first(s) octet(s) to represent an instruction,
request, answer, information, etc... We will call these bytecodes.
What those bytecodes represent are totally arbitrary, but the set of these
represents a sort of language by itself, and designing it can be tough, or at
least boring and long. The readability is an important factor in the design
process' speed. The maintainability of a such "language" can quickly become a
hell if not handled properly.
This is where this module can be usefull :
- the design process is very quick, because of a high readability
- the bytecodes (arbitrary octets) are automatically assigned
- the message encoding and decoding is very easy, and readable (cause you
don't personnaly have to read, interpret or navigate through the
bytecodes)
- the language tree can be dynamicaly modified (you must be careful though)
Quick Workflow Overview : {{{2
the following are big lines of the order to follow:
- create a string that represents all the kind of messages that will be
exchanged beetween the client and the server (or only client, or only
server, or anything else, your call), this is the model of the language
tree.
- pass this model to the "build" function, which will return a tree of the
language
- call a tail node of this tree to get a full message, ready to be sent
over the network
- when receiving a message, pass this message to the method "handle" of the
tree for it to call the custom handler attached to the corresponding node
(understand that you don't have to find the node). Alternatively, you can
call the method tree.find(received_message) which will return a 2 tuple
of the corresponding node, and the data part of the message (the part
after the bytecodes).
Model rules and usage : {{{2
A Model is a string constituted of multiple lines, it can have only one,
but in this case I recommend you to not even bother with this module.
elements to be aware of : {{{3o
to make a model, you must dinstinguish few elements essentials in its
redaction:
- the ident_char
- the sep_char
- the bytecode_size
- the name
- the data_encoder_name
- the handler_name
ident_char : {{{4
The function used to parse the model bases its parenting logic on the
identation.
The ident_char is an optional function argument.
The ident_char MUST be a string
The default ident_char is four spaces ' '
The ident_char MUST NOT be a single space
The ident_char CAN be any non-digit, non-alpha character(s), you want
but NOT '_', '\\n'
The ident_char MUST NOT be the same as sep_char
sep_char : {{{4
The sep_char is a character used to separate the name, the
data_encoder_name and the handler_nam
The sep_char is an optional function argument
The sep_char default is ':'
The sep_char SHOULD be a single character
The sep_char MUST NOT be alpha, digit, '\\n', '_', ident_char
The sep_char MUST NOT be preceeded or followed by spaces
bytecode_size : {{{4
The bytecode_size inside a model, most of the time SHOULD BE IGNORED,
unless you know that the node's children number will be over 255 (1
byte), in which case you can specify a size of 2 bytes (meaning, a
maximum of 65535 children for the node). Specify a bytecode_size > 2 is
insane if justified, otherwise uterly useless and a waste of bytes.
If used, the bytecode_size must be specified RIGHT AFTER the
identation and BEFORE the name. For readability, it is recommended that
a single space separate the bytecode_size from the name
The bytecode_size MUST be one (or more) digit
name : {{{4
The name indicate the name of the node, plain and simple
The name obey to the python naming rules, just a matter of common sense
The name MUST be specified RIGHT AFTER the identation or the
bytecode_size
the name MUST be specified BEFORE the data_encoder_name
data_encoder_name: {{{4
The data_encoder_name indicate the name of the callable object which
will be associated to the node, the goal of a such object is to encode
its arguments into a string the way you see fit. As long as it return
a string, it can does whatever you want.
The data_encoder_name is PURELY OPTIONAL
IF SPECIFIED, the node then CANNOT have any children. Therefore,
specifying the bytecode_size is non-sens.
IF SPECIFIED, it MUST be done AFTER the name, and BEFORE the
handler_name
The data_encoder_name obey to python naming rules
handler_name : {{{4
The handler_name indicate the name of the callable object which will be
associated to the node. The goal of a such object is generaly to
decode the string produced by the data_encoder. But it can does
whatever you want.
The handler_name is PURELY OPTIONAL
IF SPECIFIED, the node then CANNOT have any children. Therefore,
specifying the bytecode_size is non-sens.
IF SPECIFIED, it MUST be done AFTER the data_encoder_name OR after two
sep_char (in this case, data_encoder_name must not be specified)
The handler_name obey to python naming rules
example : {{{3
client
message
private:private_message_encoder:private_message_handler
public::public_message_handler
quit
2 server
message
warning
kick::kick_handler
Tree structure : {{{2
A language tree is composed up to three objects:
- 1 MsgRoot object
- 0+ MsgNode objects
- 1+ MsgTail objects
Inside a model, only <MsgNode> and <MsgTail> are implicitly represented ;
the <MsgRoot> - as its name suggest - just serves as a base for the
structure and doesn't have any bytecode.
As stated above, the <MsgRoot> is the base of the tree. There can only be
one per tree, obviously.
<MsgNode> just fullfill an intermediate role, to provide... a node :p. It
possess a bytecode though. In most cases, you shouldn't worry about this
lats information.
<MsgTail> are well, the end of a branch. They possess a bytecode too, and
in a raw message, they are the last bytecode before proper data to be dealt
with. They are by far, the most important. Indeed, their strengh comes
essentially from the fact that we can associate to them two callable
objects : one to converts some python object into a string, and one to
decode this very string back into data (and eventually directly process
it). This offers essentialy to the programmer more readable source code and
a higher maintainability.
Workflows : {{{2
there are several workflows possible, each will be exposed here through
examples, but always with quite the same language tree.
Quickest way : {{{3
The quickest way, consists in creating a module which only purpose is
to create the language tree and all the needed callables. Then, import
the created the tree into the client and server.
[comm.py]
from net_talk import *
model = """
client
message
public:public_encoder:public_handler
private:private_encoder:private_handler
quit::quit_handler"""
def public_encoder(message):
assert isinstance(message,str)
return message
def public_handler(data):
return data
def private_encoder(to, message):
assert isinstance(to, str)
assert isinstance(message, str)
return encode_data([to, message])
def private_handler(data):
return extract_data(data)
tree = build(model)
[/comm.py]
Now, comm.tree can be imported into the client and server modules and
be used.
Now, the client can call tree.client.message.private('john','fooooooooooo')
to obtain a string ready to be sent over the network.
Then the server receive the message, and call tree.find(message) which
will return the concerned node and the data part of the raw message.
But there is major weaknesses, in this methodology, because the
receiver of the message, will still have to identify the nature of the
node somehow in order to handle properly the decoded data provided. This is
why this metology is NOT RECOMMENDED in most cases. Though, some
program's architecture make this metodology flawless.
Efficient : {{{3
The most efficient methodology is to create a module in which you just
build the language, whithout any handlers, you can still define
data_encoders in it, but this is optional and not recommended.
Then, importing built tree into the server and client modules, and
assigning from them some handlers and/or data_encoders to concerned
<MsgTail>, regarding the job of the module.
Step 1 - creating comm.py :
[comm.py]
from net_talk import *
model="""
client
message
private
public
server
message"""
tree = build(model)
[/comm.py]
Step 2 - Inside client.py
[client.py]
*** some imports ***
from comm import tree
from net_talk import extract_data, encode_data
message = tree.client.message #shortcut
sr_msg = tree.server.message #shortcut
@message.public._command_deco
def public_message(msg):
assert isinstance(msg,str)
return encode_data(msg)
@message.private._command_deco
def private_message(reciever, message):
assert isinstance(reciever, str)
assert isinstance(message, str)
return encode_data([reciever, message])
@sr_msg._handler_deco
def server_message(data):
msg = extract_data(data)
text_widget.append(msg)
*** some code ***
def on_key_enter():
msg = entry_widget.get_message()
reciever = get_reciever()
if reciever :
connection.send( message.private(reciever, msg) )
else:
connection.send( message.public(msg) )
[/client.py]
Step 3 - Inside server.py
[server.py]
*** some imports ***
from comm import tree
from net_talk import extract_data, encode_data
cl_msg = tree.client.message #shortcut
sr_msg = tree.server.message #shortcu
@cl_msg.private._handler_deco
def private_message(data):
reciever, msg = extract_data(data)
connections[reciever].send( tree.server.message(msg) )
@cl_msg.public._handler_deco
def public_message(data):
msg = extract_data(data)
for connection in connections:
connection.send( tree.server.message(msg) )
@sr_msg._command_deco
def _message(msg):
assert isinstance(msg, str)
return encode_data(msg)
*** some code ***
msg=connection.recieve()
tree.handle(msg)
[/server.py]
'''
import string as _string
__all__ = ('MsgRoot', 'build', 'extract_data', 'encode_data')
LEGAL_CHAR = _string.ascii_letters+'_'
#Private {{{1
#Classes {{{2
class _MsgRoot_Build_Looper(object):
def __init__(s,text):
s._data = text
def _first_line_idx(s):
return s._data.find('\n')
def next(s):
idx = s._first_line_idx()
if idx == -1:
return s._data
else:
return s._data[:idx]
def __iter__(s):
while 1:
if not s._data: raise StopIteration
yield s.next()
def pop(s):
idx=s._first_line_idx()
if idx==-1:
d,s._data=s._data,''
else:
d,s._data=s._data[:idx],s._data[idx+1:]
return d
def __nonzero__(s):
return bool(s._data)
#Functions {{{2
def _byted_size(string, num_bytes=2):
val = len(string)
return ''.join(chr((val<<(8*i))&0xff) for i in xrange(num_bytes))
def _unbyte_size(byted_size):
return sum(ord(c)>>(8*i) for i,c in enumerate(byted_size))
#Public {{{1
class MsgRoot(object):#{{{2
#private {{{4o
def __init__(s,bytecode_size=1):
assert isinstance(bytecode_size,int)
assert 0<bytecode_size<256
s._childs = 0
s._set_bytecode_size(bytecode_size)
def __iter__(s):
for key in s.__dict__:
if key[0] != '_':
yield getattr(s,key)
def __setattr__(s,key,val):
assert key[0] == '_'
object.__setattr__(s,key,val)
def _set_bytecode_size(s,v):
s._bc_sz = v
s._max = sum(0xff<<(8*x) for x in xrange(s._bc_sz))
def _attribute_id(s):
r = s._childs
if r > s._max:
raise Exception('Maximum number of childs reached')
s._childs += 1
return ''.join(chr((r>>(8*i))&0xff) for i in xrange(s._bc_sz))
def _build(s,lines,parent,ident_char,sep_char,_ident):
assert isinstance(parent,MsgRoot)
assert isinstance(_ident,int)
def nest_get_bytecode_size(string):
for i,c in enumerate(string):
if c in LEGAL_CHAR:
break
if i in (0,len(string)-1):
return 1,string
bc_sz = string[:i].strip()
if not all(map(str.isdigit,bc_sz)):
raise Exception('Invalid syntax in your model, line :\n\t"%s"'%'{}{}'.format(ident_char*_ident,string))
return int(string[:i].strip()),string[i:]
def nest_strip(string):
return string.replace(ident_char,'').strip()
for line in lines:
if not nest_strip(line):
lines.pop()
continue
ident = line.count(ident_char)
if ident == _ident:
line = line.replace(ident_char,'')
bytecode_size,line = nest_get_bytecode_size(line)
args = line.split(sep_char)
assert 0<len(args)<4
assert args[0][0] in LEGAL_CHAR
if len(args) == 1: #means MsgNode
parent.add_child(args[0], bytecode_size=bytecode_size)
elif len(args) == 2: #means MsgTail
name,command = args
if command:
assert command[0] in LEGAL_CHAR
parent.add_child(name, command=eval(args[1]), bytecode_size=bytecode_size)
else:
parent.add_child(name, command=None)
elif len(args) == 3: #means MsgTail with handler
name,command,handler = args
if command:
assert command[0] in LEGAL_CHAR
command = eval(command)
else:
command = None
if handler:
assert handler[0] in LEGAL_CHAR
parent.add_child(name, command, eval(handler), bytecode_size=bytecode_size)
else:
parent.add_child(name, command, bytecode_size=bytecode_size)
last = getattr(parent,args[0])
lines.pop()
elif ident>_ident:
if 'last' not in locals(): raise Exception('Please, recheck your model identation or function\'s arg "_ident"')
s._build(lines, last, ident_char, sep_char, ident)
else:
return
def _set_tails(s):
for node in s:
if not node._childs:
node.tail_transmute()
else:
node._set_tails()
#public {{{4o
def add_child(s, name, command=None, handler=None, bytecode_size=1):
'''<Node>.add_child(name, command=None, handler=None, bytecode_size=1) --> None
name <-- str : name of the child (obey to python naming rules)
command <-- callable : callable object that must return a string
handler <-- callable : callable object that have only one argument (self
argument in cases of classes instances is not taken in account)
Please, refer to the module docs for further details'''
assert name
assert isinstance(name,str)
assert name not in s.__dict__
if command is not None or handler is not None:
object.__setattr__(s, name, MsgTail(bytecode_size, s._attribute_id(), s, command, handler))
else:
object.__setattr__(s, name, MsgNode(bytecode_size, s._attribute_id(), s))
def is_tail(s):
return isinstance(s ,MsgTail)
def tail_transmute(s):
raise Exception('MsgRoot objects cannot become tails')
def find(s, string):
'''<MsgRoot>.find(string) -> (<MsgTail>, data)
string <- str : must be a raw message received from network
search throug the tree the coresponding <MsgTail>, and
return it along with the data (part of the string after the
bytecodes)'''
for node in s:
if string.startswith(str(node)):
if node.is_tail():
return node,string[len(str(node)):]
return node.find(string)
raise Exception('string [%s] does not coreespond to any tail of the language'%repr(string))
def handle(s, string):
'''<MsgRoot>.handle(string) -> ???
string <- str : must be a raw message received from network
Is the same as :
>>> node,data = <MsgRoot>.find(raw_message)
>>> node.handle(data)'''
node,arg = s.find(string)
return node.handle(arg)
def build(s,text,ident_char=' '*4, sep_char=':',_ident=0):
assert all(isinstance(x,str) for x in (ident_char,sep_char))
assert ident_char != sep_char
assert ident_char not in sep_char
s._build(_MsgRoot_Build_Looper(text),s,ident_char,sep_char,_ident)
s._set_tails()
class MsgNode(MsgRoot): #{{{2
def __init__(s,bytecode_size,code,parent):
MsgRoot.__init__(s,bytecode_size)
s._bytecode = code
s._parent = parent
def __str__(s):
if isinstance(s._parent,MsgNode):
return str(s._parent)+s._bytecode
return s._bytecode
def __len__(s):
return len(str(s))
def tail_transmute(s):
assert not s._childs
s.__class__ = MsgTail
s.__init__(s._bc_sz,s._bytecode,s._parent)
class MsgTail(MsgNode): #{{{2
@staticmethod
def _dummy(*args,**kwargs): return ''
def _command_deco(s, _callable):
def wrapper(*args,**kwargs):
return _callable(*args,**kwargs)
s._command = wrapper
def _handler_deco(s, _callable):
def wrapper(*args,**kwargs):
return _callable(*args,**kwargs)
s._handler = wrapper
def __init__(s,bytecode_size,code,parent,command=None,handler=None):
MsgNode.__init__(s,bytecode_size,code,parent)
if command is None:
command = s._dummy
if handler is None:
handler = s._dummy
assert callable(command)
assert callable(handler)
s._command=command
s._handler=handler
def __call__(s,*args,**kwargs):
'''<MsgTail>.__call__(s,*args,**kwargs) -> str
call the associated command, which MUST return a string'''
r=s._command(*args,**kwargs)
assert isinstance(r,str)
return str(s)+r
def set_command(s,command):
assert callable(command)
s._command=command
def set_handler(s,handler):
assert callable(handler)
s._handler=handler
def handle(s,data):
'''<MsgTail>.handle(data) -> ???
data <-- str : is the part of the raw message after the bytecodes
call the associated handler, wich can return what you want.
Generaly, the goal of the handler is to decode the data, and return it,
but it can directly process it, or do whatever you want. Your call.'''
return s._handler(data)
def add_child(s):
raise Exception('MsgTail objects cannot have any childs')
def tail_transmute(s):
pass
def build(model, bytecode_size=1): #{{{2
'''build(model, bytecode_size=1) -> MsgRoot
model <-- string representing the tree language
bytecode_size <-- int indicate the size (in bytes) of the bycodes attributed
to the MsgRoot's direct children'''
tree=MsgRoot(bytecode_size)
tree.build(model)
return tree
def encode_data(iterable, size_num_bytes=2): #{{{2
if not hasattr(iterable, '__iter__'):
iterable = [iterable]
assert all(isinstance(x, str) for x in iterable)
return ''.join(_byted_size(x,size_num_bytes) for x in iterable)
def extract_data(data, size_num_bytes=2, _data=None): #{{{2
sb = size_num_bytes
if _data is None:
_data = []
size = _unbyte_size(data[:sb])
data_end = sb+size
_data.append(data[sb:data_end])
data = data[data_end:]
if data:
extract_data(data, sb, _data)
if len(_data) == 1:
return _data[0]
return _data |
Partager