IdentifiantMot de passe
Loading...
Mot de passe oublié ?Je m'inscris ! (gratuit)
Navigation

Inscrivez-vous gratuitement
pour pouvoir participer, suivre les réponses en temps réel, voter pour les messages, poser vos propres questions et recevoir la newsletter

MATLAB Discussion :

[solve] Résolution d'un système de deux équations


Sujet :

MATLAB

Vue hybride

Message précédent Message précédent   Message suivant Message suivant
  1. #1
    Futur Membre du Club
    Profil pro
    Inscrit en
    Mai 2007
    Messages
    5
    Détails du profil
    Informations personnelles :
    Localisation : France

    Informations forums :
    Inscription : Mai 2007
    Messages : 5
    Par défaut [solve] Résolution d'un système de deux équations
    Bonjour,

    je dois résoudre un système de 2 équations (X1 et X2) à 2 inconnues (R et t).
    Les équations ne sont pas très commodes et lorsque j'utilise la fonction :j'obtiens le message suivant :
    Warning: Warning, solutions may have been lost
    puis les résultats affichés sont loin d'être ceux que j'attends...

    Visiblement, Matlab dois "manquer de mémoire" et tronque des valeurs, ce qui me donne des résultats faux.
    Je ne sais pas trop comment résoudre ce problème.
    J'avais pensé utiliser la fonction fzero, mais cela implique de connaître où se situent les solutions et je ne sais pas l'utiliser avec un système, seulement avec une équation à une inconnue.

    Est-il possible d'utiliser une autre fonction de résolution de système ?
    Ou peut-être utiliser plus de précision dans les valeurs ?

    Merci d'avance

    Matlab 7.4.0.287 (R2007a)

  2. #2
    Membre éprouvé
    Profil pro
    Inscrit en
    Décembre 2004
    Messages
    1 299
    Détails du profil
    Informations personnelles :
    Localisation : France

    Informations forums :
    Inscription : Décembre 2004
    Messages : 1 299
    Par défaut
    Salut, tu peux utiliser une méthode numérique. Pour résoudre l'équation f(x)=0 où x est un vecteur de R^2 (x=(x1;x2)), utilise la méthode de Newton et toutes ses variantes.

  3. #3
    Membre émérite
    Avatar de rostomus
    Homme Profil pro
    Doctorant électronique et traitement du signal
    Inscrit en
    Décembre 2006
    Messages
    791
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Âge : 42
    Localisation : France

    Informations professionnelles :
    Activité : Doctorant électronique et traitement du signal

    Informations forums :
    Inscription : Décembre 2006
    Messages : 791
    Par défaut
    Salut,

    Tu peux nous poster tes deux équations?

  4. #4
    Futur Membre du Club
    Profil pro
    Inscrit en
    Mai 2007
    Messages
    5
    Détails du profil
    Informations personnelles :
    Localisation : France

    Informations forums :
    Inscription : Mai 2007
    Messages : 5
    Par défaut
    Voici les 2 équations :

    Code : Sélectionner tout - Visualiser dans une fenêtre à part
    1
    2
    3
    4
    5
    6
    7
    8
    9
    X1 =
     
    598459172153623/2374945115996160*pi-1/4*(1637500000000/273*t^2*R*(18/15625-12035612411181512153/72018011619328000000000000000000*R/t^3+(-2491596114225751/1208925819614629174706176+7802383612627838942311038999531524974685067173656264998622535560518887/33625946619946996896066769151862778492368248522481336320000000000000000000000000000000000000000000000000000000000000*R^4/t^12)*R^2/t^2)^(1/2)*(54459784665979693/2880720464773120000000000000/t^3)^(71/25+5388982421036481330682482662376010433/51865939976016628167831715840000000000000000000000000000*R^2/t^6+(-1314906976004109/576460752303423488+370816673790655729637/72018011619328000000000000000000*R/t^3-145327539147378968191217198930338201/103731879952033256335663431680000000000000000000000000000*R^2/t^6)*R/t)+4189214205075361/26388279066624000)/R*(700976274800963/4611686018427387904-47543392013400271989/144036023238656000000000000000000*R/t^3+5910975214708699665410119948329878257/51865939976016628167831715840000000000000000000000000000000*R^2/t^6+(269/20-9931106086422581923189586280125244302614927665228774727671750448507129/538015145919151950337068306429804455877891976359701381120000000000000000000000000000000000000000000000000000*R^4/t^12+768268220905111444642045323725885970696268735253998472449867711616476769362394983151634283596195860399105811649686808509084460611707421929/7236507430960159138002537883147695892287498964704148031336460737147158526674013993670006695302921745490887311360000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000*R^8/t^24)*t^2/R^2)^(1/2)*(54459784665979693/2880720464773120000000000000/t^3)^(-143/50+145353165273499800617/72018011619328000000000000000*R/t^3-24168859520652881873269978654761755101/51865939976016628167831715840000000000000000000000000000*R^2/t^6+(-3176444784221283161893747348048820679/51865939976016628167831715840000000000000000000000000*R^2/t^6+18182104765841874964776682764409991119136453041654452933655897411040067/1345037864797879875842670766074511139694729940899253452800000000000000000000000000000000000000000000000000*R^4/t^12-4878621499956665561347657795538707354816420235941206935106533022273106582126843572092971888838896766563/6976165316107640652787016623812415820133010160793401687975328170575665795846845235200000000000000000000000000000000000000000000000000000000000000000000000000*R^6/t^18)*t/R)-(-6550000000000/273*t^2*R^2*(18/15625-12035612411181512153/72018011619328000000000000000000*R/t^3+(-2491596114225751/1208925819614629174706176+7802383612627838942311038999531524974685067173656264998622535560518887/33625946619946996896066769151862778492368248522481336320000000000000000000000000000000000000000000000000000000000000*R^4/t^12)*R^2/t^2)^(1/2)*(54459784665979693/2880720464773120000000000000/t^3)^(71/25+5388982421036481330682482662376010433/51865939976016628167831715840000000000000000000000000000*R^2/t^6+(-1314906976004109/576460752303423488+370816673790655729637/72018011619328000000000000000000*R/t^3-145327539147378968191217198930338201/103731879952033256335663431680000000000000000000000000000*R^2/t^6)*R/t)*(200030789078143412389/288072046477312000000000000000000/t^3-3656915423851393219995322577165449017/207463759904066512671326863360000000000000000000000000000000/t^6+4361054595430220456135594514690220666542632289390039/59764509885442146192643850359054002364088320000000000000000000000000000000000000000000/t^9+930503702839999/2189866660074853547892690386944*t*54459784665979693^(1/5)*2880720464773120000000000000^(4/5)/(1/t^3)^(4/5)/R)/(700976274800963/4611686018427387904-47543392013400271989/144036023238656000000000000000000*R/t^3+5910975214708699665410119948329878257/51865939976016628167831715840000000000000000000000000000000*R^2/t^6+(269/20-9931106086422581923189586280125244302614927665228774727671750448507129/538015145919151950337068306429804455877891976359701381120000000000000000000000000000000000000000000000000000*R^4/t^12+768268220905111444642045323725885970696268735253998472449867711616476769362394983151634283596195860399105811649686808509084460611707421929/7236507430960159138002537883147695892287498964704148031336460737147158526674013993670006695302921745490887311360000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000*R^8/t^24)*t^2/R^2)^(1/2)/((54459784665979693/2880720464773120000000000000/t^3)^(-143/50+145353165273499800617/72018011619328000000000000000*R/t^3-24168859520652881873269978654761755101/51865939976016628167831715840000000000000000000000000000*R^2/t^6+(-3176444784221283161893747348048820679/51865939976016628167831715840000000000000000000000000*R^2/t^6+18182104765841874964776682764409991119136453041654452933655897411040067/1345037864797879875842670766074511139694729940899253452800000000000000000000000000000000000000000000000000*R^4/t^12-4878621499956665561347657795538707354816420235941206935106533022273106582126843572092971888838896766563/6976165316107640652787016623812415820133010160793401687975328170575665795846845235200000000000000000000000000000000000000000000000000000000000000000000000000*R^6/t^18)*t/R))+7779969237997099/26388279066624000)*(200030789078143412389/288072046477312000000000000000000/t^3-3656915423851393219995322577165449017/207463759904066512671326863360000000000000000000000000000000/t^6+4361054595430220456135594514690220666542632289390039/59764509885442146192643850359054002364088320000000000000000000000000000000000000000000/t^9+930503702839999/2189866660074853547892690386944*t*54459784665979693^(1/5)*2880720464773120000000000000^(4/5)/(1/t^3)^(4/5)/R)-(1637500000000/273*t^3*(13/500*R/t-3162509803996765/147573952589676412928*R^2/t^2)*(54459784665979693/2880720464773120000000000000/t^3)^(278/125+3085217946327923/2305843009213693952*R/t)-4189214205075361/52776558133248000)*(1/4/R*(700976274800963/4611686018427387904-47543392013400271989/144036023238656000000000000000000*R/t^3+5910975214708699665410119948329878257/51865939976016628167831715840000000000000000000000000000000*R^2/t^6+(269/20-9931106086422581923189586280125244302614927665228774727671750448507129/538015145919151950337068306429804455877891976359701381120000000000000000000000000000000000000000000000000000*R^4/t^12+768268220905111444642045323725885970696268735253998472449867711616476769362394983151634283596195860399105811649686808509084460611707421929/7236507430960159138002537883147695892287498964704148031336460737147158526674013993670006695302921745490887311360000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000*R^8/t^24)*t^2/R^2)^(1/2)*(54459784665979693/2880720464773120000000000000/t^3)^(-143/50+145353165273499800617/72018011619328000000000000000*R/t^3-24168859520652881873269978654761755101/51865939976016628167831715840000000000000000000000000000*R^2/t^6+(-3176444784221283161893747348048820679/51865939976016628167831715840000000000000000000000000*R^2/t^6+18182104765841874964776682764409991119136453041654452933655897411040067/1345037864797879875842670766074511139694729940899253452800000000000000000000000000000000000000000000000000*R^4/t^12-4878621499956665561347657795538707354816420235941206935106533022273106582126843572092971888838896766563/6976165316107640652787016623812415820133010160793401687975328170575665795846845235200000000000000000000000000000000000000000000000000000000000000000000000000*R^6/t^18)*t/R)-54459784665979693/23045763718184960000000000000/t^3-18*t/R)^2/(1/4*t*(13/500*R/t-3162509803996765/147573952589676412928*R^2/t^2)*(54459784665979693/2880720464773120000000000000/t^3)^(278/125+3085217946327923/2305843009213693952*R/t)/R^2*(700976274800963/4611686018427387904-47543392013400271989/144036023238656000000000000000000*R/t^3+5910975214708699665410119948329878257/51865939976016628167831715840000000000000000000000000000000*R^2/t^6+(269/20-9931106086422581923189586280125244302614927665228774727671750448507129/538015145919151950337068306429804455877891976359701381120000000000000000000000000000000000000000000000000000*R^4/t^12+768268220905111444642045323725885970696268735253998472449867711616476769362394983151634283596195860399105811649686808509084460611707421929/7236507430960159138002537883147695892287498964704148031336460737147158526674013993670006695302921745490887311360000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000*R^8/t^24)*t^2/R^2)^(1/2)*(54459784665979693/2880720464773120000000000000/t^3)^(-143/50+145353165273499800617/72018011619328000000000000000*R/t^3-24168859520652881873269978654761755101/51865939976016628167831715840000000000000000000000000000*R^2/t^6+(-3176444784221283161893747348048820679/51865939976016628167831715840000000000000000000000000*R^2/t^6+18182104765841874964776682764409991119136453041654452933655897411040067/1345037864797879875842670766074511139694729940899253452800000000000000000000000000000000000000000000000000*R^4/t^12-4878621499956665561347657795538707354816420235941206935106533022273106582126843572092971888838896766563/6976165316107640652787016623812415820133010160793401687975328170575665795846845235200000000000000000000000000000000000000000000000000000000000000000000000000*R^6/t^18)*t/R)/(18/15625-12035612411181512153/72018011619328000000000000000000*R/t^3+(-2491596114225751/1208925819614629174706176+7802383612627838942311038999531524974685067173656264998622535560518887/33625946619946996896066769151862778492368248522481336320000000000000000000000000000000000000000000000000000000000000*R^4/t^12)*R^2/t^2)^(1/2)/((54459784665979693/2880720464773120000000000000/t^3)^(71/25+5388982421036481330682482662376010433/51865939976016628167831715840000000000000000000000000000*R^2/t^6+(-1314906976004109/576460752303423488+370816673790655729637/72018011619328000000000000000000*R/t^3-145327539147378968191217198930338201/103731879952033256335663431680000000000000000000000000000*R^2/t^6)*R/t))-54459784665979693/23045763718184960000000000000/t^3-18*t/R)
     
     
     
    X2 =
     
    -3275000000000/273*t^2*R*(18/15625-12035612411181512153/72018011619328000000000000000000*R/t^3+(-2491596114225751/1208925819614629174706176+7802383612627838942311038999531524974685067173656264998622535560518887/33625946619946996896066769151862778492368248522481336320000000000000000000000000000000000000000000000000000000000000*R^4/t^12)*R^2/t^2)^(1/2)*(54459784665979693/2880720464773120000000000000/t^3)^(71/25+5388982421036481330682482662376010433/51865939976016628167831715840000000000000000000000000000*R^2/t^6+(-1314906976004109/576460752303423488+370816673790655729637/72018011619328000000000000000000*R/t^3-145327539147378968191217198930338201/103731879952033256335663431680000000000000000000000000000*R^2/t^6)*R/t)+1056558429015651/17592186044416/R*(700976274800963/4611686018427387904-47543392013400271989/144036023238656000000000000000000*R/t^3+5910975214708699665410119948329878257/51865939976016628167831715840000000000000000000000000000000*R^2/t^6+(269/20-9931106086422581923189586280125244302614927665228774727671750448507129/538015145919151950337068306429804455877891976359701381120000000000000000000000000000000000000000000000000000*R^4/t^12+768268220905111444642045323725885970696268735253998472449867711616476769362394983151634283596195860399105811649686808509084460611707421929/7236507430960159138002537883147695892287498964704148031336460737147158526674013993670006695302921745490887311360000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000*R^8/t^24)*t^2/R^2)^(1/2)*(54459784665979693/2880720464773120000000000000/t^3)^(-143/50+145353165273499800617/72018011619328000000000000000*R/t^3-24168859520652881873269978654761755101/51865939976016628167831715840000000000000000000000000000*R^2/t^6+(-3176444784221283161893747348048820679/51865939976016628167831715840000000000000000000000000*R^2/t^6+18182104765841874964776682764409991119136453041654452933655897411040067/1345037864797879875842670766074511139694729940899253452800000000000000000000000000000000000000000000000000*R^4/t^12-4878621499956665561347657795538707354816420235941206935106533022273106582126843572092971888838896766563/6976165316107640652787016623812415820133010160793401687975328170575665795846845235200000000000000000000000000000000000000000000000000000000000000000000000000*R^6/t^18)*t/R)

  5. #5
    Membre éprouvé
    Profil pro
    Inscrit en
    Décembre 2004
    Messages
    1 299
    Détails du profil
    Informations personnelles :
    Localisation : France

    Informations forums :
    Inscription : Décembre 2004
    Messages : 1 299
    Par défaut
    Salut, tes équations n'ont rien de bien compliqué. Utilise la méthode de Newton et c'est gagné. Le calcul de la jacobienne est facile.
    Mais je n'ai pas vu de signe "=" Où est ton second membre ?

  6. #6
    Futur Membre du Club
    Profil pro
    Inscrit en
    Mai 2007
    Messages
    5
    Détails du profil
    Informations personnelles :
    Localisation : France

    Informations forums :
    Inscription : Mai 2007
    Messages : 5
    Par défaut
    Il n'y a pas de signe "= " car il me semble que Matlab le met par defaut dans le solve.

    C'est à dire : solve(X1,X2) <=> solve(X1=0,X2=0).

    Du moins, c'est ce que j'avais compris dans la documentation.

    Sinon, pour la résolution vous avez raison, je vais utiliser Newton-Raphson.
    Merci beacoup

Discussions similaires

  1. Réponses: 4
    Dernier message: 05/12/2013, 10h01
  2. [XL-2007] Résolution d'une système de trois équations à trois inconnues
    Par frisou65 dans le forum Macros et VBA Excel
    Réponses: 1
    Dernier message: 26/08/2011, 08h20
  3. Réponses: 1
    Dernier message: 22/05/2008, 13h56
  4. Réponses: 1
    Dernier message: 13/12/2006, 12h01
  5. Résolution d'un système d'équations
    Par JeaJeanne dans le forum MATLAB
    Réponses: 1
    Dernier message: 04/12/2006, 10h08

Partager

Partager
  • Envoyer la discussion sur Viadeo
  • Envoyer la discussion sur Twitter
  • Envoyer la discussion sur Google
  • Envoyer la discussion sur Facebook
  • Envoyer la discussion sur Digg
  • Envoyer la discussion sur Delicious
  • Envoyer la discussion sur MySpace
  • Envoyer la discussion sur Yahoo