1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
| clear all
close all
clc
%% properties of the beams
N=2;
A =1e-3 ; % Cross section [m^2]
D =sqrt(4*A/pi); % Cross section diameter [m]
rho = 2700; % density of material [kg/m^3]
E = 69e9; % Young modulus [Pa]
mu = 0.33; % Poisson coefficient [-]
G = E/(2+2*mu); % Shear modulus [Pa]
I_y = (pi*D^4)/64; % Cross section moment of inertia along z [m^4]
I_z = I_y; % Cross section moment of inertia along y [m^4]
J_x = 2*I_y;% Cross section torsion c [m^4]
r=sqrt(I_z/A); %giration radius of circular cross section
%% lumped mass:
m=20; % kg
%% coordinates of principal nodes and beam list
%coord=zeros(18,3);
for i=0:5
coord(3*i+1,:)=[i*tand(4) 0 i];
coord(3*i+2,:)=[0.6 -0.3+i*tand(2) i];
coord(3*i+3,:)=[0.6 0.3-i*tand(2) i];
end
Coord=coord
elementNodes=zeros(48,2);
elementNodes(1:9,:)=[1 2;...
2 3;...
3 1;...
3 6;...
1 4;...
2 5;...
1 5;...
3 5;...
1 6];
for i=1:4
elementNodes(i*9+1:i*9+9,:)=elementNodes(1:9,:)+3*i;
end
elementNodes(end-2:end,:)=[16 17;...
17 18;...
16 18];
numberNodes=size(coord,1);
numberElements=size(elementNodes,1);
hold off
for i=1:numberElements
element1=elementNodes(i,1);
element2=elementNodes(i,2);
x=[coord(element1,1) coord(element2,1)];
y=[coord(element1,2) coord(element2,2)];
z=[coord(element1,3) coord(element2,3)];
plot3(x,y,z,'-ok');hold on
end
axis equal
subNO
%% List of subelements of structure
subelement=zeros(numberElements*N,2);
index = 19;
k=1;
if N==1
disp('Please N must be upper than one or equal to zero in case of no subelement in a beam in the subNO file; thanks')
elseif N==0
subelement=elementNodes;
else
for i=1:numberElements
subelement(k,:)=[elementNodes(i,1) index];
k=k+1;
index= index+1;
for j=2:N-1
subelement(k,:) = [index-1 index+1-1];
index = index+1;
k=k+1;
end
subelement(k,:) = [index-1 elementNodes(i,2)];
k =k+1;
end
end
%% list of DOFs of structure
t= ((N-1)*length(elementNodes) + numberNodes);
dofList=zeros(t,6);
for i=1:t
for j=1:6
dofList(i,j)=(i-1)*6+j;
end
end
%%
%%Localisation Matrix
Locel=zeros(N*numberElements,12);
for i=1:N*numberElements
dof_1=dofList(subelement(i,1),:); % dofs of 1st node
dof_2=dofList(subelement(i,2),:); % dofs of 2nd node
Locel(i,:) = [dof_1 dof_2];
end
%%
% Kglobal(locel,locel)=Kglobal(locel,locel)+T(:,:,s)'*Kel*T(:,:,s);
% Mglobal(locel,locel)=Mglobal(locel,locel)+T(:,:,s)'*Mel*T(:,:,s);
p3=[0 -0.3 0];
X3=0; Y3=-0.3; Z3=0;
eX = [1 0 0];
eY = [0 1 0];
eZ = [0 0 1]; % Global axis (structure)
k=1;
n=N*numberElements;
T=zeros(12,12,n)
l=zeros(N*numberElements,1)
for i=1:numberElements
L(i,:)=norm(coord(elementNodes(i,2),:)-coord(elementNodes(i,1),:)); % length of each beam
l=L(i,:)/N %length of each subelement(discretized beam)
ex(i,:)=(coord(elementNodes(i,2),:)-coord(elementNodes(i,1),:))/norm(coord(elementNodes(i,2),:)-coord(elementNodes(i,1),:));
d2(i,:)=(coord(elementNodes(i,2),:)-coord(elementNodes(i,1),:));
d3(i,:)=p3-coord(elementNodes(i,1),:);
ey(i,:)=cross(d3(i,:),d2(i,:))./norm(cross(d3(i,:),d2(i,:)));
ez(i,:)=cross(ex(i,:),ey(i,:));
R(:,:,i)=[dot(eX,ex(i,:)) dot(eY,ex(i,:)) dot(eZ,ex(i,:));...
dot(eX,ey(i,:)) dot(eY,ey(i,:)) dot(eZ,ey(i,:));...
dot(eX,ez(i,:)) dot(eY,ez(i,:)) dot(eZ,ez(i,:)) ]
Te=[R zeros(3) zeros(3) zeros(3);...
zeros(3) R zeros(3) zeros(3);...
zeros(3) zeros(3) R zeros(3);...
zeros(3) zeros(3) zeros(3) R];
end
%%Assembly
Kel=[(E*A/l) 0 0 0 0 0 -(E*A/l) 0 0 0 0 0 ;
0 ((12*E*I_z)/l^3) 0 0 0 (6*E*I_z)/(l^2) 0 (-12*E*I_z)/(l^3) 0 0 0 (6*E*I_z)/(l^2) ;
0 0 (12*E*I_y)/(l^3) 0 (-6*E*I_y)/(l^2) 0 0 0 (-12*E*I_y)/(l^3) 0 (-6*E*I_y)/(l^2) 0 ;
0 0 0 (G*J_x)/(l) 0 0 0 0 0 (-G*J_x)/(l) 0 0 ;
0 0 (-6*E*I_y)/(l^2) 0 (4*E*I_y)/(l) 0 0 0 (6*E*I_y)/(l^2) 0 (2*E*I_y)/(l) 0 ;
0 (6*E*I_z)/(l^2) 0 0 0 (4*E*I_z)/(l) 0 (-6*E*I_z)/(l^2) 0 0 0 (2*E*I_z)/(l) ;
(-E*A)/(l) 0 0 0 0 0 (E*A)/(l) 0 0 0 0 0 ;
0 (-12*E*I_z)/(l^3) 0 0 0 (-6*E*I_z)/(l^2) 0 (12*E*I_z)/(l^3) 0 0 0 (-6*E*I_z)/(l^2);
0 0 (-12*E*I_y)/(l^3) 0 (6*E*I_y)/(l^2) 0 0 0 (12*E*I_y)/(l^3) 0 (6*E*I_y)/(l^2) 0 ;
0 0 0 (-G*J_x)/(l) 0 0 0 0 0 (G*J_x)/(l) 0 0 ;
0 0 (-6*E*I_y)/(l^2) 0 (2*E*I_y)/(l) 0 0 0 (6*E*I_y)/(l^2) 0 (4*E*I_y)/(l) 0 ;
0 (6*E*I_z)/(l^2) 0 0 0 (2*E*I_z)/(l) 0 (-6*E*I_z)/(l^2) 0 0 0 (4*E*I_z)/(l)] ;
% Elementary mass matrix
Mel = rho*A*l* ...
[ 1/3 0 0 0 0 0 1/6 0 0 0 0 0;
0 13/35 0 0 0 11*l./210 0 9/70 0 0 0 -13*l./420;
0 0 13/35 0 -11*l./210 0 0 0 9/70 0 13*l./420 0;
0 0 0 (r^2)/3 0 0 0 0 0 (r^2)/6 0 0;
0 0 -11*l./210 0 (l)^2/105 0 0 0 -13*l./420 0 -(l)^2/140 0;
0 11*l./210 0 0 0 l.^2/105 0 13*l/420 0 0 0 -l.^2/140;
1/6 0 0 0 0 0 1/3 0 0 0 0 0;
0 9/70 0 0 0 13*l./420 0 13/35 0 0 0 -11*l./210;
0 0 9/70 0 -13*l./420 0 0 0 13/35 0 11*l/210 0;
0 0 0 (r^2)/6 0 0 0 0 0 r^2/3 0 0;
0 0 13*l./420 0 -((l)^2)/140 0 0 0 11*l./210 0 (l^2)/105 0;
0 -13*l./420 0 0 0 -(l^2)/140 0 -11*l./210 0 0 0 ((l)^2)/105];
%% assembly process:
Nnode_tot = (N-1)*length(elementNodes) + numberNodes; % Number of nodes of structure
Ndof = Nnode_tot*6;
K_global=zeros(Ndof,Ndof); %reset the stiffness matrix of the element in global reference frame
M_global=zeros(Ndof,Ndof); %reset the stiffness matrix of the element in global reference frame
for k=1:numberElements
for s=1:N*numberElements
K_global(Locel(i,:),Locel(i,:))=K_global(Locel(i,:),Locel(i,:))+T(:,:,s)'*Kel*T(:,:,s);
M_global(Locel(i,:),Locel(i,:))=M_global(Locel(i,:),Locel(i,:))+T(:,:,s)'*Mel*T(:,:,s);
end
end
M_global(91,91)=M_global(91,91)+ m; % lumped mass is located at the 16th node
M_global(92,92)=M_global(92,92)+ m;
M_global(93,93)=M_global(93,93)+ m;
% Boundary conditions.
% nodes 1,2 and 3 are fixed.
fixNode_1 = [doflist(1,:)];
fixNode_2 = [doflist(2,:)];
fixNode_3 = [doflist(3,:)];
clampedDOF = [fixNode_1 fixNode_2 fixNode_3 ];
K_global(clampedDOF, :) = [];
K_global(:, clampedDOF) = [];
M_global(clampedDOF, :) = [];
M_global(:, clampedDOF) = [];
[V,D]=eigs(K_global,M_global,5,'sm');
omega = diag(D.^(0.5));
f = omega/(2*pi);
%% Damping matrix
Coeff = 2*[omega(1) 1/omega(1); omega(2) 1/omega(2)]^(-1)*[0.01 0.01]'; % Eq. 3.20 p.156
a = Coeff(1);
b = Coeff(2);
CGlobal = a*KGlobal + b*MGlobal; % Eq. 3.19 p.156
eps = 1/2*(a.*omega + b./omega); |
Partager