IdentifiantMot de passe
Loading...
Mot de passe oublié ?Je m'inscris ! (gratuit)
Navigation

Inscrivez-vous gratuitement
pour pouvoir participer, suivre les réponses en temps réel, voter pour les messages, poser vos propres questions et recevoir la newsletter

MATLAB Discussion :

G729.m Algorithme probleme


Sujet :

MATLAB

Vue hybride

Message précédent Message précédent   Message suivant Message suivant
  1. #1
    Membre averti
    Homme Profil pro
    Étudiant
    Inscrit en
    Février 2015
    Messages
    20
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : France, Lozère (Languedoc Roussillon)

    Informations professionnelles :
    Activité : Étudiant
    Secteur : Enseignement

    Informations forums :
    Inscription : Février 2015
    Messages : 20
    Par défaut G729.m Algorithme probleme
    Salut à tous, je travaille sur l'algorithme du codec G29, vous trouvez le ci-dessous, j'ai essayé de donner des entrées comme le suivant:


    Code : Sélectionner tout - Visualiser dans une fenêtre à part
    1
    2
    3
    4
    5
    6
    7
    8
     
    clear all 
    clc
    Fs=8000; %fréquence échentillonage 8Khz
    Nw=240; %windows size = nb échentillon pour calculer les coefficients LP
    Nsh=80;  %nb échentillons/trame 
    x=8000*(rand(1,80*500)) % signal d'entré
    y = G729( x, Fs, Nw, Nsh ) % description ci-dessous
    mais ça marche pas, Matlab donne l'erreur suivante: ???

    Error using ==> vertcat
    CAT arguments dimensions are not
    consistent.
    
    Error in ==> G729>VAD at 129
    xwin = [VADPar.Wmem; x_new_hp]
    
    Error in ==> G729 at 11
    [v,VADPar] = VAD(x(x_start:x_end),
    VADPar)
    
    Error in ==> testg729byvalues at 9
    y = G729( x, Fs, Nw, Nsh )


    %%%%%%%%%%%%%% Le code MATLAB %%%%%%%%%%%
    Code : Sélectionner tout - Visualiser dans une fenêtre à part
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    231
    232
    233
    234
    235
    236
    237
    238
    239
    240
    241
    242
    243
    244
    245
    246
    247
    248
    249
    250
    251
    252
    253
    254
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
    265
    266
    267
    268
    269
    270
    271
    272
    273
    274
    275
    276
    277
    278
    279
    280
    281
    282
    283
    284
    285
    286
    287
    288
    289
    290
    291
    292
    293
    294
    295
    296
    297
    298
    299
    300
    301
    302
    303
    304
    305
    306
    307
    308
    309
    310
    311
    312
    313
    314
    315
    316
    317
    318
    319
    320
    321
    322
    323
    324
    325
    326
    327
    328
    329
    330
    331
    332
    333
    334
    335
    336
    337
    338
    339
    340
    341
    342
    343
    344
    345
    346
    347
    348
    349
    350
    351
    352
    353
    354
    355
    356
    357
    358
    359
    360
    361
    362
    363
    364
    365
    366
    367
    368
    369
    370
    371
    372
    373
    374
    375
    376
    377
    378
    379
    380
    381
    382
    383
    384
    385
    386
    387
    388
    389
    390
    391
    392
    393
    394
    395
    396
    397
    398
    399
    400
    401
    402
    403
    404
    405
    406
    407
    408
    409
    410
    411
    412
    413
    414
    415
    416
    417
    418
    419
    420
    421
    422
    423
    424
    425
    426
    427
    428
    429
    430
    431
    432
    433
    434
    435
    436
    437
    438
     
     
    function y = G729( x, Fs, Nw, Nsh )
    %G729 Summary of this function goes here
    % Detailed explanation goes here
    % frameSize = Nw-Nsh;
    VADPar = InitVADPar(Fs,Nw,Nsh);
    numFrame = floor((length(x)-Nw)/Nsh+1);
    y = zeros(size(x));
    x_start = 1;
    x_end = Nsh; % the window shift logic is already supported by G729 implementation
    for j=1:numFrame
    [v,VADPar] = VAD(x(x_start:x_end), VADPar);
    y(x_start:x_end) = v;
    x_start = x_start+Nsh;
    x_end = min(x_end+Nsh,length(x));
    end
    %
    % function [y, new_params] = G729( x, params, Fs, window, frameSize )
    %
    % % frameSize = window-winshift;
    % if isempty(params)
    % if nargin < 5, error('not enough arguments'); end
    % params = InitVADPar(Fs,window,frameSize);
    % end
    % % numFrame = floor(length(x)/frameSize);
    %
    % % y = zeros(size(x));
    %
    % % x_start = 1;
    % % x_end = frameSize; % the window shift logic is already supported by G729 implementation
    %
    % % for j=1:numFrame
    % [y, new_params] = VAD(x, params);
    % % y(x_start:x_end) = v;
    % % x_start = x_start+frameSize;
    % % x_end = x_end +frameSize;
    % % end
    function VADPar = InitVADPar(Fs,Nw,Nsh)
    % initialize constant parameters
    VADPar.M = 10; % LP order
    VADPar.NP = 12; % autocorrelation order
    VADPar.N0 = 128; % number of frames for long-term min energy calculation
    VADPar.Ni = 32; % number of frames for initialization of running averages
    VADPar.INIT_COUNT = 20;
    % HPFilt is a HPF that is used to preprocess the signal applied to the VAD.
    % 140 Hz cutoff, unity gain near 200 Hz, falling to 0.971 at high freq.
    VADPar.HPFilt.b = [ 0.92727435, -1.8544941, 0.92727435 ];
    VADPar.HPFilt.a = [ 1, -1.9059465, 0.91140240 ];
    VADPar.HPFilt.Mem = [];
    VADPar.N = Nw; % window size
    VADPar.LA = 40; % Look-ahead
    VADPar.NF = Nsh; % Frame size
    LWmem = VADPar.N - VADPar.NF;
    VADPar.Wmem = zeros(LWmem, 1);
    LA = VADPar.LA;
    LB = VADPar.N - VADPar.LA;
    VADPar.Window = [0.54 - 0.46*cos(2*pi*(0:LB-1)'/(2*LB-1));
    cos(2*pi*(0:LA-1)'/(4*LA-1))];
    % LP analysis, lag window applied to autocorrelation coefficients
    % Fs = 8000;
    BWExp = 60; % 60 Hz bandwidth expansion, Gaussian window
    w0 = 2 * pi * BWExp / Fs;
    NP = VADPar.NP;
    Wn = 1.0001; % White noise compensation (diagonal loading)
    VADPar.LagWindow = [Wn; exp(-0.5 * (w0 * (1:NP)').^2)] / Wn;
    % Correlation for a lowpass filter (3 dB point on the power spectrum is
    % at about 2 kHz)
    VADPar.LBF_CORR = ...
    [ 0.24017939691329, 0.21398822343783, 0.14767692339633, ...
    0.07018811903116, 0.00980856433051,-0.02015934721195, ...
    -0.02388269958005,-0.01480076155002,-0.00503292155509, ...
    0.00012141366508, 0.00119354245231, 0.00065908718613, ...
    0.00015015782285]';
    % initialize variable parameters
    VADPar.FrmCount = 0;
    VADPar.FrmEn = Inf * ones(1,VADPar.N0);
    VADPar.MeanLSF = zeros(VADPar.M, 1);
    VADPar.MeanSE = 0;
    VADPar.MeanSLE = 0;
    VADPar.MeanE = 0;
    VADPar.MeanSZC = 0;
    VADPar.count_sil = 0;
    VADPar.count_inert = 0; % modified for AppendixII
    VADPar.count_update = 0;
    VADPar.count_ext = 0;
    VADPar.less_count = 0;
    VADPar.flag = 1;
    VADPar.PrevMarkers = [1, 1];
    VADPar.PrevEnergy = 0;
    VADPar.Prev_MinE = Inf;
    VADPar.Next_MinE = Inf;
    VADPar.MinE_buffer = Inf * ones(1, VADPar.N0/8);
    return
    function [Ivd, VADPar, v_flag] = VAD (x_new, VADPar)
    % The Matlab routine implements the Voice Activity Detector (VAD) for
    % the ITU-T G.729 coder. The VAD is specified in G.729B (annex B to
    % G.729) to accompany G.729A the low complexity version of the G.729 coder.
    % There is a modification to the VAD given in Appendix II (G.729II).
    %
    % The reference code for G.729A, G.729B, and G.729II uses fixed point
    % arithmetic. However, G.729C+ includes reference code in floating point
    % for both the coder and the VAD. This Matlab routine in double precision
    % floating point borrows the relevant parts from the Annex C+ floating
    % point code, but retains the decision logic of Appendix II. A switch is
    % available to disable the Appendix II modifications.
    % The VAD uses the preprocessed speech (highpass filtered) and the linear
    % predictive parameters from the coder. The Matlab code here is standalone
    % and so includes the preprocessing and the LP analysis.
    % Tests on this VAD show a match to the G.729C+ VAD decisions (with the
    % Appendix II option turned off).
    % P. Kabal 2008-04-03
    % Ivd - VAD flag, 0 no speech, 1 speech
    % VADPar - Updated parameter structure
    % v_flag - one during hangover (only for VAD_APPENDIX_II = 0)
    VAD_APPENDIX_II = 1;
    % Constants
    N = VADPar.N; % window size
    N0 = VADPar.N0; % number of frames used for long-term minimum energy calculation
    Ni = VADPar.Ni; % number of frames used for initialization of running averages
    INIT_COUNT = VADPar.INIT_COUNT;
    NOISE = 0;
    VOICE = 1;
    v_flag = 0;
    VADPar.FrmCount = VADPar.FrmCount + 1;
    frm_count = VADPar.FrmCount;	
    % Filter new data (HP filter)
    [x_new_hp, VADPar.HPFilt.Mem] = filter(VADPar.HPFilt.b, VADPar.HPFilt.a, ...
    32768 * x_new, VADPar.HPFilt.Mem);
    % Append new filtered data to filter memory
    xwin = [VADPar.Wmem; x_new_hp];
    % LPC analysis
    [r, LSF, rc2] = VADLPAnalysis(xwin, VADPar);
    % Full band energy
    Ef = 10*log10(r(1) / N);
    % Low band energy
    Elow = r(1) * VADPar.LBF_CORR(1) ...
    + 2 * sum(r(2:end) .* VADPar.LBF_CORR(2:end));
    El = 10*log10(Elow / N);
    % Compute SD
    SD = sum((LSF-VADPar.MeanLSF).^2);
    % Normalized zero-crossing rate (in current frame)
    ist = VADPar.N - VADPar.LA - VADPar.NF + 1; % Current frame start
    ifn = ist + VADPar.NF - 1; % Current frame end
    ZC = zcr(xwin(ist:ifn+1));
    % The next steps involve finding the minimum energy in the N0 frames.
    % The original code in G.729 is very convoluted. The Matlab code below
    % mimics the operation with a simpler structure.
    % - To reduce computations, the minimum energy for blocks of 8 samples
    % is determined. These values are stored in a buffer of length N0/8.
    % The buffer is updated whenever the frame count is a multiple of 8.
    % Starting at the beginning, the minimum of the frames 1-8 is stored
    % into the buffer in frame 8, the minimum of the frames 9-16 is stored
    % into the buffer at frame 16, etc.
    % - Prev_Min is the minimum of the values stored in the buffer, effectively
    % the minimum of N0 energy values.
    % - Next_Min is the minimum used to determine the minimum of the next
    % 8 samples.
    % - MinE is min(Prev_Min, Next_Min).
    % - Note that that for frame count equal to a multiple of 8, Next_Min is
    % updated and MinE is updated before updating the buffer. This means
    % that MinE is calculated over N0+8 values. MinE is effectively
    % calculated over a varying window length (N0+1 to N0+8). It is
    % nonincreasing while the window length increases.
    % - The value of Min will not be used until frame N0.
    % Long-term minimum energy
    VADPar.Next_MinE = min(Ef, VADPar.Next_MinE);
    MinE = min(VADPar.Prev_MinE, VADPar.Next_MinE);
    if (mod(frm_count, 8) == 0)
    VADPar.MinE_buffer = [VADPar.MinE_buffer(2:end), VADPar.Next_MinE];
    VADPar.Prev_MinE = min(VADPar.MinE_buffer);
    VADPar.Next_MinE = Inf;
    end
    % Initialization of running averages
    if (frm_count <= Ni)
    if (Ef < 21)
    VADPar.less_count = VADPar.less_count + 1;
    marker = NOISE;
    else
    marker = VOICE;
    NEp = (frm_count - 1) - VADPar.less_count;
    NE = NEp + 1;
    VADPar.MeanE = (VADPar.MeanE * NEp + Ef) / NE;
    VADPar.MeanSZC = (VADPar.MeanSZC * NEp + ZC) / NE;
    VADPar.MeanLSF = (VADPar.MeanLSF * NEp + LSF) / NE;
    end
    end
    if (frm_count >= Ni)
    if (frm_count == Ni)
    if (VAD_APPENDIX_II)
    if (VADPar.less_count >= Ni) % modified for Appendix II
    VADPar.FrmCount = 0;
    frm_count = VADPar.FrmCount;
    VADPar.less_count = 0;
    end
    end
    VADPar.MeanSE = VADPar.MeanE - 10;
    VADPar.MeanSLE = VADPar.MeanE - 12;
    end
    dSE = VADPar.MeanSE - Ef;
    dSLE = VADPar.MeanSLE - El;
    dSZC = VADPar.MeanSZC - ZC;
    if (Ef < 21)
    marker = NOISE;
    else
    marker = MakeDec(dSLE, dSE, SD, dSZC);
    end
    if (VAD_APPENDIX_II)
    if (marker == VOICE) % modified for Appendix II
    VADPar.count_inert = 0;
    end
    if (marker == NOISE && VADPar.count_inert < 6)
    VADPar.count_inert = VADPar.count_inert + 1;
    marker = VOICE;
    end
    else
    v_flag = 0;
    end
    % Voice activity decision smoothing: Step 1
    if (VADPar.PrevMarkers(1) == VOICE && marker == NOISE ...
    && Ef > VADPar.MeanSE + 2 && Ef > 21)
    marker = VOICE;
    if (~VAD_APPENDIX_II)
    v_flag = 1;
    end
    end
    % Voice activity decision smoothing: Step 2
    if (VADPar.flag == 1)
    if (VADPar.PrevMarkers(2) == VOICE ...
    && VADPar.PrevMarkers(1) == VOICE ...
    && marker == NOISE ...
    && abs(Ef - VADPar.PrevEnergy) <= 3)
    VADPar.count_ext = VADPar.count_ext + 1;
    marker = VOICE;
    if(~ VAD_APPENDIX_II)
    v_flag = 1;
    end
    if (VADPar.count_ext <= 4)
    VADPar.flag = 1;
    else
    VADPar.flag = 0;
    VADPar.count_ext = 0;
    end
    end
    else
    VADPar.flag = 1;
    end
    % For unvoiced case, count_sil is incremented
    if (marker == NOISE)
    VADPar.count_sil = VADPar.count_sil + 1;
    end
    % Voice activity decision smoothing: Step 3
    if (marker == VOICE && VADPar.count_sil > 10 ...
    && Ef - VADPar.PrevEnergy <= 3)
    marker = NOISE;
    VADPar.count_sil = 0;
    if (VAD_APPENDIX_II)
    VADPar.count_inert = 6; % modified for AppendixII
    end
    end
    if (marker == VOICE)
    VADPar.count_sil = 0;
    end
    % Voice activity decision smoothing: Step 4
    if (~VAD_APPENDIX_II)
    if (Ef < VADPar.MeanSE + 3 && VADPar.FrmCount > N0 ...
    && v_flag == 0 && rc2 < 0.6)
    marker = NOISE;
    end
    end
    if (VAD_APPENDIX_II)
    TestC = (Ef < VADPar.MeanSE + 3 && rc2 < 0.75); % Appendix II
    else
    TestC = (Ef < VADPar.MeanSE + 3 && rc2 < 0.75 && SD < 0.002532959);
    end
    if (TestC)
    VADPar.count_update = VADPar.count_update + 1;
    % Modify update speed coefficients
    if (VADPar.count_update < INIT_COUNT)
    COEF = 0.75;
    COEFZC = 0.8;
    COEFSD = 0.6;
    elseif (VADPar.count_update < INIT_COUNT + 10)
    COEF = 0.95;
    COEFZC = 0.92;
    COEFSD = 0.65;
    elseif (VADPar.count_update < INIT_COUNT + 20)
    COEF = 0.97;
    COEFZC = 0.94;
    COEFSD = 0.70;
    elseif (VADPar.count_update < INIT_COUNT + 30)
    COEF = 0.99;
    COEFZC = 0.96;
    COEFSD = 0.75;
    elseif (VADPar.count_update < INIT_COUNT + 40)
    COEF = 0.995;
    COEFZC = 0.99;
    COEFSD = 0.75;
    else
    COEF = 0.995;
    COEFZC = 0.998;
    COEFSD = 0.75;
    end
    % Update mean LSF, SE, SLE, SZC
    VADPar.MeanLSF = COEFSD * VADPar.MeanLSF + (1-COEFSD) * LSF;
    VADPar.MeanSE = COEF * VADPar.MeanSE + (1-COEF) * Ef;
    VADPar.MeanSLE = COEF * VADPar.MeanSLE + (1-COEF) * El;
    VADPar.MeanSZC = COEFZC * VADPar.MeanSZC + (1-COEFZC) * ZC;
    end
    if (frm_count > N0 && ...
    (VADPar.MeanSE < MinE && SD < 0.002532959) ...
    || VADPar.MeanSE > MinE + 10 )
    VADPar.MeanSE = MinE;
    VADPar.count_update = 0;
    end
    end
    VADPar.PrevEnergy = Ef;
    VADPar.PrevMarkers = [marker, VADPar.PrevMarkers(1)];
    ist = VADPar.NF + 1;
    VADPar.Wmem = xwin(ist:end);
    Ivd = marker;
    return
    % ----- ----- ----- -----
    function dec = MakeDec(dSLE, dSE, SD, dSZC)
    a = [0.00175, -0.004545455, -25, 20, 0, ...
    8800, 0, 25, -29.09091, 0, ...
    14000, 0.928571, -1.5, 0.714285];
    b = [0.00085, 0.001159091, -5, -6, -4.7, ...
    -12.2, 0.0009, -7.0, -4.8182, -5.3, ...
    -15.5, 1.14285, -9, -2.1428571];
    dec = 0;
    % SD vs dSZC
    if SD > a(1)*dSZC+b(1)
    dec = 1;
    return;
    end
    if SD > a(2)*dSZC+b(2)
    dec = 1;
    return;
    end
    % dSE vs dSZC
    if dSE < a(3)*dSZC+b(3)
    dec = 1;
    return;
    end
    if dSE < a(4)*dSZC+b(4)
    dec = 1;
    return;
    end
    if dSE < b(5)
    dec = 1;
    return;
    end
    % dSE vs SD
    if dSE < a(6)*SD+b(6)
    dec = 1;
    return;
    end
    if SD > b(7)
    dec = 1;
    return;
    end
    % dSLE vs dSZC
    if dSLE < a(8)*dSZC+b(8)
    dec = 1;
    return;
    end
    if dSLE < a(9)*dSZC+b(9)
    dec = 1;
    return;
    end
    if dSLE < b(10)
    dec = 1;
    return;
    end
    % dSLE vs SD
    if dSLE < a(11)*SD+b(11)
    dec = 1;
    return;
    end
    % dSLE vs dSE
    if dSLE > a(12)*dSE+b(12)
    dec = 1;
    return
    end
    if dSLE < a(13)*dSE+b(13)
    dec = 1;
    return;
    end
    if dSLE < a(14)*dSE+b(14)
    dec = 1;
    return;
    end
    return
    % ----- ----- ----- -----
    function [zc] = zcr (x)
    % Calculate normalized (per sample) zero-crossing rate
    % Input is the frame plus the first sample of the next
    % frame.
    M = length(x) - 1;
    x1 = x(1:end-1);
    x2 = x(2:end);
    xp = x1 .* x2;
    I = (xp < 0);
    %sign1 = sign(x);
    %sign2 = sign([mem; x(1:M-1)]);
    %
    %zc = 1/(2*M)*sum(abs(sign1-sign2));
    zc = sum(I) / M;
    return
    % -----------------------------
    function [r, LSF, rc2] = VADLPAnalysis (x, VADPar)
    M = VADPar.M; % LP order
    NP = VADPar.NP; % autocorrelation order
    % Apply window to input frame
    xw = VADPar.Window .* x;
    % Compute autocorrelation
    r = acorr(xw, NP+1) .* VADPar.LagWindow;
    % Compute normalized LSF
    A = ac2poly(r(1:M+1));
    LSF = poly2lsf(A) / (2 * pi); % normalized to 0 to 0.5
    % Reflection coefficients
    rc = ac2rc(r(1:3));
    rc2 = rc(2);
    return
    % -----------------------------
    function rxx = acorr (x, Nt)
    Nx = length (x);
    N = Nt;
    if (Nt > Nx)
    N = Nx;
    end
    rxx = zeros(Nt, 1);
    for (i = 0:N-1)
    Nv = Nx - i;
    rxx(i+1) = x(1:Nv)' * x(i+1:i+Nv);
    end
    return

  2. #2
    Membre chevronné
    Homme Profil pro
    Éternel universitaire
    Inscrit en
    Avril 2012
    Messages
    421
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : Canada

    Informations professionnelles :
    Activité : Éternel universitaire

    Informations forums :
    Inscription : Avril 2012
    Messages : 421
    Par défaut
    Bonjour,

    L'erreur parle d'elle même. Regarde les dimensions de VADPar.Wmem et de x_new_hp. Soit elles sont complètement différentes, soit tu essayes de concaténer ton vecteur le long de la mauvaise dimension (remplace alors ton ; par ,)

  3. #3
    Membre averti
    Homme Profil pro
    Étudiant
    Inscrit en
    Février 2015
    Messages
    20
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : France, Lozère (Languedoc Roussillon)

    Informations professionnelles :
    Activité : Étudiant
    Secteur : Enseignement

    Informations forums :
    Inscription : Février 2015
    Messages : 20
    Par défaut
    Merci pour ta réponse, c'est ce que j'ai pensé moi aussi, mais pour trouver l'erreur exacte il faut negliger les fonctions et écrire touts leurs instructions par ordre. pour trouver enfin la taille (la longueur) des deux vecteur et les comparer.


    merci.

Discussions similaires

  1. Algorithme probleme du cavalier
    Par belaggoun2000 dans le forum Algorithmes et structures de données
    Réponses: 4
    Dernier message: 21/03/2008, 00h35
  2. probleme algorithme SHA-1
    Par delfare dans le forum Algorithmes et structures de données
    Réponses: 3
    Dernier message: 04/03/2006, 22h41
  3. Probleme avec mon algorithme de tri
    Par kaygee dans le forum Langage
    Réponses: 6
    Dernier message: 09/01/2006, 21h23
  4. Probleme avec un algorithme
    Par vodevil dans le forum Langage
    Réponses: 2
    Dernier message: 20/11/2005, 01h56
  5. Algorithme de pitch shift (probleme de crossfade)
    Par DjPoke dans le forum Algorithmes et structures de données
    Réponses: 2
    Dernier message: 26/08/2005, 09h03

Partager

Partager
  • Envoyer la discussion sur Viadeo
  • Envoyer la discussion sur Twitter
  • Envoyer la discussion sur Google
  • Envoyer la discussion sur Facebook
  • Envoyer la discussion sur Digg
  • Envoyer la discussion sur Delicious
  • Envoyer la discussion sur MySpace
  • Envoyer la discussion sur Yahoo