Bonjour à tous, je me tourne vers vous pour savoir si quelqu'un connait une solution à mon problème. Je m'explique, j'ai un programme Python que je viens de développer pour réaliser des calculs sur une matice. Tout fonctionne bien, mais il prend beaucoup de temps pour fonctionner sur des gros jeux de données.
C'est pourquoi je me suis amusé à le paralléliser (ayant un serveur DEBIAN avec Python 2.6 dessus ). Il fonctionne parfaitement sur un fichier, mais dès qu'il doit traiter plus d'un fichier, jai une erreur système qui apparaît :

File "rarefact_curve_estimators2.py", line 248, in <module>
status = os.waitpid(Child_pid,0)
OSError: [Errno 10] No child processes

Voici mon code, là perso, j'ai essayé de creuser, impossible de trouver une solution :
Code : Sélectionner tout - Visualiser dans une fenêtre à part
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
 
#Import needed modules (needed : comb for gmpy, corresponding at combinatory calculations)
 
import math
 
import decimal
 
import gmpy
 
import os
 
import time
 
 
decimal.getcontext().prec = 6
 
 
 
#Defined variables for the main program and for the calculation of the rarefaction curve
 
treated_files = list()
 
Cluster_analyzed = list()
 
tmp = list()
 
Matrix = list()
 
Nb_seq_MOTUs = 0
 
Result_tmp = decimal.Decimal(0)
 
Result,Result_fin = float(), float()
 
Result2 = ""
 
Nb_MOTUs,verif = 0,0
 
i,j,n = 0,0,0
 
N_Ni,x,result = 0,0,0
 
Rarefact_chose = ""
 
string_printed = "Sample\t"
 
tmp_printed = list()
 
Result_printed = [""]
 
Children = []
 
Child_pid = 0
 
 
 
 
 
#-------------------------------------------------------------------------------------------------------
 
#First part of the program, asking for data chosen by the user to analyze files in 'IN' directory
 
#and also estimators needed to be calculated and chose by the user
 
#-------------------------------------------------------------------------------------------------------
 
#Asking for the desired threshold of dissimilarity
 
print ("- Please give the chosen similarity threshold to select the clustering\n(in percent) [0-100] ?")
 
cutoff = raw_input()
 
cutoff = float(cutoff)
 
cutoff = (100-cutoff)/100
 
#Asking for the user if he wants the calculation of the rarefaction curve
 
print ("- Do you want to determine a rarefaction curve based on these data\n[yes, no] ?")
 
Rarefact_chose = raw_input()
 
#Asking for the user if he wants the determination of the Chao1 richness estimator
 
print ("- Do you want to calculate the full bias corrected Chao1 richness estimator\
 
\non these data [yes, no] ?")
 
Chao_chose = raw_input()
 
#Asking for the user if he wants the determination of the ACE richness estimator
 
print ("- Do you want to calculate the ACE richness estimator on these\ndata [yes, no] ?")
 
ACE_chose = raw_input()
 
#Asking for the user if he wants the determination of the ACE richness estimator
 
print ("- Do you want to calculate the bootstrap estimate and also shannon and simpson\
 
\nindexes on these data [yes, no] ?")
 
Index_chose = raw_input()
 
#Deleting the last character of the string and transforming it in integer
 
 
 
#-------------------------------------------------------------------------------------------------------
 
#Needed function
 
#-------------------------------------------------------------------------------------------------------
 
def read_folder(path): ##read_folder (to acquire all file names in a defined directory)
 
     tab = []
 
     tab = os.listdir(path)
 
     return tab
 
def combinatory(N,n): ##combinatory (permit the calculation of combinatorial values)
 
     X = math.factorial(N)
 
     Xb = math.factorial(n)
 
     Xc = math.factorial(N-n)
 
     final = X/(Xb*Xc)
 
     return final
 
 
 
#-------------------------------------------------------------------------------------------------------
 
#Main program : selection and storage of the chosen cluster
 
#-------------------------------------------------------------------------------------------------------
 
string_printed +="Nb_seqs\tNb_clusters\t"
 
if Chao_chose.lower() == "yes":
 
     string_printed += "Chao1\tvar(Chao1)\tLCI95\tUCI95\t"
 
if ACE_chose.lower() == "yes":
 
     string_printed += "ACE\tRare_ACE\tAbundant_ACE\t"
 
if Index_chose.lower() == "yes":
 
     string_printed += "Bootstrap\tShannon\tvar(Shannon)\tSimpson\t1/Simpson"
 
Result_printed[0] = string_printed
 
#Automatic acquisition of file names in the target directory
 
treated_files = read_folder("IN")
 
#For each detected file in the target directory ("IN")
 
for i in range(len(treated_files)):
 
     Result_printed.append(str(treated_files[i])+"\t")
 
     #Defined variables for chao calculation
 
     C_chao1,S_chao1,var_S_chao1 = 0,0,0
 
     n1,n2 = 0,0
 
     LCI95_chao1,UCI95_chao1 = 0,0
 
     #Defined variables for ACE calculation
 
     N_rare_ACE,C_ACE = 0,0
 
     Gamma_ACE,S_rare_ACE = 0,0
 
     S_ACE,S_abund_ACE,n1_ACE = 0,0,0
 
     #Defined variables for shannon and simpson index calculations
 
     S_bootstrap = 0
 
     H_Shannon,var_H_Shannon = decimal.Decimal(0),decimal.Decimal(0)
 
     D_Simpson = decimal.Decimal(0)
 
     #Needed empty variables
 
     verif = 0
 
     tmp = list()
 
     n = 0
 
     Cluster_analyzed = list()
 
     #open the targeted cluster file 
 
     Cluster_file = open("IN/"+treated_files[i], 'r')
 
     #For each read line of the file (as the line is not empty)
 
     Read_line = Cluster_file.readline()
 
     while Read_line != "":
 
          Read_line = Cluster_file.readline()
 
          #We search for the line containg the number of sequences
 
          if 0<=Read_line.find("Sequences", 0):
 
               #The line is splitted based on "\t" and stored in tmp
 
               tmp = Read_line.split("\t")
 
               #The number of sequences in stored in Nb_seqs_tot after conversion in int
 
               Nb_seqs_tot = int(tmp[1])
 
          #We search also for the distance cut-off to clusterize sequences to found the corresponding
 
          #cluster based on the choice of the user
 
          if 0<=Read_line.find("distance", 0):
 
               tmp = Read_line.split("\t")
 
               #We verify that the defined threshold by the user is same or below the analyzed cluster
 
               if float(tmp[1]) >= cutoff and verif == 0:
 
                    #Needed variable to 1 to stop the data acquisition
 
                    verif = 1
 
                    Read_line = Cluster_file.readline()
 
                    #Loop to copy needed data
 
                    while Read_line != "":
 
                         #Stop the analysis if we found the end of the cluster
 
                         if Read_line == "\n":
 
                              break
 
                         #Copy and storage of cluster number needed to calculate rarefact curve
 
                         if 0<=Read_line.find("Clusters", 0):
 
                              tmp = Read_line.split("\t")
 
                              Nb_clusters = int(tmp[1])
 
                         #Copy only the needed data (number of sequences in the cluster)
 
                         elif Read_line != "":
 
                              tmp = Read_line.split("\t")
 
                              Cluster_analyzed.append(int(tmp[2]))
 
                         Read_line = Cluster_file.readline()
 
     #Close the treated file as it's not needed now
 
     Cluster_file.close()     
 
#-------------------------------------------------------------------------------------------------------
 
#After recuperation in Cluster_analyzed of needed data (MOTUs and sequences in each MOTUs), the next
 
#step is developed to create the needed matrix to calculate the rarefaction curve
 
#-------------------------------------------------------------------------------------------------------
 
     #Rearrange the list by values (ascending 1 to n)
 
     Cluster_analyzed.sort()
 
 
 
     #For each line (correponding to each MOTU), creation of the matrix
 
     for element in Cluster_analyzed:
 
          #We count the number of MOTUs with the same number of sequences
 
          if Nb_seq_MOTUs == element:
 
               Nb_MOTUs += 1
 
          #If we found a new number of sequences in a MOTU, we create a new line and store the
 
          #data obtained for the previous MOTU type
 
          else:
 
               Matrix.append([Nb_seq_MOTUs, Nb_MOTUs])
 
               Nb_seq_MOTUs = element
 
               Nb_MOTUs = 1
 
     #As the loop didn't verify the last data, a new step is dedicated to the analysis
 
     tmp = Matrix[-1]
 
     #Addition of the last if needed
 
     if Nb_seq_MOTUs == tmp[0]:
 
          tmp[1] +=1
 
          Matrix[-1] = tmp
 
     #Or creation of a new line
 
     else:
 
          Matrix.append([Nb_seq_MOTUs, 1])
 
     #Close the file
 
     Nb_seq_MOTUs = 0
 
     Nb_MOTUs = 0
 
     #Deletion of the first line not needed for the rarefaction curve
 
     del Matrix[0]
 
 
 
#-------------------------------------------------------------------------------------------------------
 
#Calculation of the rarefaction curve based on the formula found in various publications if wanted
 
#for details : see Appendix.A
 
#-------------------------------------------------------------------------------------------------------
 
     #Verification for the choice of the user for calculation of the rarefaction curve
 
     if Rarefact_chose.lower() == "yes":
 
          #Create a new file to store the rarefaction curve calculation data
 
          Rarefact_curve = open("OUT/"+"rc_"+str(cutoff)+"_"+treated_files[i], 'w')
 
          Rarefact_curve.close()
 
          #A maximum of 1000 points are determined, verification of the number of sequences
 
          #If the number of sequences if less than 1000, we treat each point
 
          if Nb_seqs_tot < 1000:
 
               Nb_steps_calc = 1
 
          #Else, we calculate the needed step to do 1000 points
 
          else:
 
               Nb_steps_calc = math.floor(Nb_seqs_tot/1000)
 
          #Loop to calculate the rarefaction curve
 
          while n < Nb_seqs_tot:
 
     		Child_pid = os.fork()
 
     		if Child_pid == 0:
 
     			#Calculation of the rarefaction curve points (details in the formula)
 
          		for element in Matrix:
 
          			#For each element in the matrix, we calculate N_Ni
 
          			N_Ni = Nb_seqs_tot - element[0]
 
          			#Sum of combinatory values in the upper formula using N_Ni, n and Nb_seqs_tot
 
          			Result = Result + element[1]*gmpy.comb(gmpy.mpz(N_Ni),gmpy.mpz(n))
 
     			#Determination of the value of the rarefaction curve for n sequences in Nb_seqs_tot data
 
     			Result_fin = float(Nb_clusters) - Result/(gmpy.comb(gmpy.mpz(Nb_seqs_tot),gmpy.mpz(n)))
 
     			#Needed empty variable
 
     			Result = 0
 
     			#In the result file, storage of results for this step
 
     			Result2 = str(n) + "\t" + str(Result_fin) + "\n"
     			#Append the file to store results
 
     			Rarefact_curve = open("OUT/"+"rc_"+str(cutoff)+"_"+treated_files[i], 'a')
 
     			Rarefact_curve.write(Result2)
 
     			Rarefact_curve.close()
 
     			os._exit(0)
 
     		else:
 
     			Children.append(Child_pid)
 
     			#Increment n using the step calculated before
 
     			n += Nb_steps_calc
     #Wait for all child processes to continue the program
 
     for Child_pid in Children:
 
		status = os.waitpid(Child_pid,0)
 
     Result_printed[i+1]+= str(Nb_seqs_tot)+"\t"+str(Nb_clusters)+"\t"