| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 
 | // Kmeans.java 
 
package com.orhandemirel.clustering;
 
import java.util.Random;
import java.util.ArrayList;
 
public class  Kmeans{
 
    private double[][] data;         // data to cluster
    private int numClusters;    // number of clusters
    private double[][] clusterCenters;   // cluster centers
    private int dataSize;               // size of the data
    private int dataDim;                // dimention of the data
    private ArrayList[] clusters;     // calculated clusters
    private double[] clusterVars;        // cluster variances
 
    private double epsilon;
 
    public Kmeans(double[][] data, int numClusters, double[][] clusterCenters)
    {
        dataSize = data.length;
        dataDim = data[0].length;
 
        this.data = data;
 
        this.numClusters = numClusters;
 
        this.clusterCenters = clusterCenters;
 
        clusters = new ArrayList[numClusters];
         for(int i=0;i<numClusters;i++)
        {
            clusters[i] = new ArrayList();
        }
        clusterVars = new double[numClusters];
 
        epsilon = 0.01;
    }
 
    public Kmeans(double[][] data, int numClusters)
    {
        this(data, numClusters, true);
    }
 
    public Kmeans(double[][] data, int numClusters, boolean randomizeCenters)
    {
        dataSize = data.length;
        dataDim = data[0].length;
 
        this.data = data;
 
        this.numClusters = numClusters;
 
        this.clusterCenters =  new double[numClusters][dataDim];
 
        clusters = new ArrayList[numClusters];
        for(int i=0;i<numClusters;i++)
        {
            clusters[i] = new ArrayList();
        }
        clusterVars = new double[numClusters];
 
        epsilon = 0.01;
 
        if(randomizeCenters)
        {
            randomizeCenters(numClusters, data);
        }
    }
 
    private void randomizeCenters(int numClusters, double[][] data) {
        Random r = new Random();
        int[] check = new int[numClusters];
        for (int i = 0; i < numClusters; i++) {
            int rand = r.nextInt(dataSize);
            if (check[i] == 0) {
                this.clusterCenters[i] = data[rand].clone();
                check[i] = 1;
            } else {
                i--;
            }
        }
    }
 
    private void calculateClusterCenters()
    {
        for(int i=0;i<numClusters;i++)
        {
            int clustSize = clusters[i].size();
 
            for(int k= 0; k < dataDim; k++)
            {
 
                double sum = 0d;
                for(int j =0; j < clustSize; j ++)
                {
                    double[] elem = (double[]) clusters[i].get(j);
                    sum += elem[k];
                }
 
                clusterCenters[i][k] = sum / clustSize;
            }
        }
    }
 
     private void calculateClusterVars()
    {
        for(int i=0;i<numClusters;i++)
        {
            int clustSize = clusters[i].size();
            Double sum = 0d;
 
                for(int j =0; j < clustSize; j ++)
                {
 
                    double[] elem = (double[])clusters[i].get(j);
 
                    for(int k= 0; k < dataDim; k++)
                    {
                        sum += Math.pow( (Double)elem[k] - getClusterCenters()[i][k], 2);
                    }
                }
 
            clusterVars[i] = sum / clustSize;
        }
    }
 
     public double getTotalVar()
    {
         double total = 0d;
         for(int i=0;i< numClusters;i++)
         {
             total += clusterVars[i];
         }
 
         return total;
     }
 
     public double[] getClusterVars()
    {
        return  clusterVars;
    }
 
     public ArrayList[] getClusters()
    {
         return clusters;
    }
 
     private void assignData()
    {
        for(int k=0;k<numClusters;k++)
        {
            clusters[k].clear();
        }
 
        for(int i=0; i<dataSize; i++)
        {
 
            int clust = 0;
            double dist = Double.MAX_VALUE;
            double newdist = 0;
 
            for(int j=0; j<numClusters; j++)
            {
                newdist = distToCenter( data[i], j );
                if( newdist <= dist )
                {
                    clust = j;
                    dist = newdist;
                }
            }
 
            clusters[clust].add(data[i]);
        }
 
    }
 
     private double distToCenter( double[] datum, int j )
    {
         double sum = 0d;
         for(int i=0;i < dataDim; i++)
         {
             sum += Math.pow(( datum[i] - getClusterCenters()[j][i] ), 2);
         }
 
         return Math.sqrt(sum);
    }
 
      public void calculateClusters()
    {
 
         double var1 = Double.MAX_VALUE;
         double var2;
         double delta;
 
        do
        {
              calculateClusterCenters();
              assignData();
              calculateClusterVars();
              var2 = getTotalVar();
              if (Double.isNaN(var2))    // if this happens, there must be some empty clusters
             {
                 delta = Double.MAX_VALUE;
                 randomizeCenters(numClusters, data);
                 assignData();
                 calculateClusterCenters();
                 calculateClusterVars();
             }
             else
             {
                 delta = Math.abs(var1 - var2);
                 var1 = var2;
             }
 
        }while(delta > epsilon);
    }
 
    public void setEpsilon(double epsilon)
    {
        if(epsilon > 0)
        {
            this.epsilon = epsilon;
        }
    }
 
    /**
     * @return the clusterCenters
     */
    public double[][] getClusterCenters() {
        return clusterCenters;
    }
} | 
Partager