1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
| % USAGES:
% [AlphaY, SVs, Bias, Parameters, nSV, nLabel] = RbfSVC(Samples, Labels)
% [AlphaY, SVs, Bias, Parameters, nSV, nLabel] = RbfSVC(Samples, Labels, Gamma)
% [AlphaY, SVs, Bias, Parameters, nSV, nLabel] = RbfSVC(Samples, Labels, Gamma, C)
%
% DESCRIPTION:
% Construct a non-linear SVM classifier with a radial based kernel, or Guassian kernel,
% from the training Samples and Labels
%
% INPUTS:
% Samples: all the training patterns. (a row of column vectors)
% Lables: the corresponding class labels for the training patterns in Samples, (a row vector)
% Gamma: parameters of the radial based kernel, which has the form
% of (exp(-Gamma*|X(:,i)-X(:,j)|^2)). (default 1)
% C: Cost of the constrain violation (default 1)
%
% OUTPUTS:
% AlphaY - Alpha * Y, where Alpha is the non-zero Lagrange Coefficients, and
% Y is the corresponding Labels, (L-1) x sum(nSV);
% All the AlphaYs are organized as follows: (pretty fuzzy !)
% classifier between class i and j: coefficients with
% i are in AlphaY(j-1, start_Pos_of_i:(start_Pos_of_i+1)-1),
% j are in AlphaY(i, start_Pos_of_j:(start_Pos_of_j+1)-1)
% SVs - Support Vectors. (Sample corresponding the non-zero Alpha), M x sum(nSV),
% All the SVs are stored in the format as follows:
% [SVs from Class 1, SVs from Class 2, ... SVs from Class L];
% Bias - Bias of all the 2-class classifier(s), 1 x L*(L-1)/2;
% Parameters - Output parameters used in training;
% nSV - numbers of SVs in each class, 1xL;
% nLabel - Labels of each class, 1xL.
%
% By Junshui Ma, and Yi Zhao (02/15/2002)
% |