1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
| Option Compare Database
Option Explicit
'*******************************************************************************
' MODULE: CMD5
' FILENAME: C:\My Code\vb\md5\CMD5.cls
' AUTHOR: Phil Fresle
' CREATED: 16-Feb-2001
' COPYRIGHT: Copyright 2001 Frez Systems Limited. All Rights Reserved.
'
' DESCRIPTION:
' Derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm,
' as set out in the memo RFC1321.
'
' This class is used to generate an MD5 'digest' or 'signature' of a string. The
' MD5 algorithm is one of the industry standard methods for generating digital
' signatures. It is generically known as a digest, digital signature, one-way
' encryption, hash or checksum algorithm. A common use for MD5 is for password
' encryption as it is one-way in nature, that does not mean that your passwords
' are not free from a dictionary attack. If you are using the
' routine for passwords, you can make it a little more secure by concatenating
' some known random characters to the password before you generate the signature
' and on subsequent tests, so even if a hacker knows you are using MD5 for
' your passwords, the random characters will make it harder to dictionary attack.
'
' *** CAUTION ***
' See the comment attached to the MD5 method below regarding use on systems
' with different character sets.
'
' This is 'free' software with the following restrictions:
'
' You may not redistribute this code as a 'sample' or 'demo'. However, you are free
' to use the source code in your own code, but you may not claim that you created
' the sample code. It is expressly forbidden to sell or profit from this source code
' other than by the knowledge gained or the enhanced value added by your own code.
'
' Use of this software is also done so at your own risk. The code is supplied as
' is without warranty or guarantee of any kind.
'
' Should you wish to commission some derivative work based on this code provided
' here, or any consultancy work, please do not hesitate to contact us.
'
' Web Site: http://www.frez.co.uk
' E-mail: sales@frez.co.uk
'
' MODIFICATION HISTORY:
' 1.0 16-Feb-2001
' Phil Fresle
' Initial Version
'*******************************************************************************
Private Const BITS_TO_A_BYTE As Long = 8
Private Const BYTES_TO_A_WORD As Long = 4
Private Const BITS_TO_A_WORD As Long = BYTES_TO_A_WORD * BITS_TO_A_BYTE
Private m_lOnBits(0 To 30) As Long
Private m_l2Power(0 To 30) As Long
'*******************************************************************************
' Class_Initialize (SUB)
'
' DESCRIPTION:
' We will usually get quicker results by preparing arrays of bit patterns and
' powers of 2 ahead of time instead of calculating them every time, unless of
' course the methods are only ever getting called once per instantiation of the
' class.
'*******************************************************************************
Private Sub Class_Initialize()
' Could have done this with a loop calculating each value, but simply
' assigning the values is quicker - BITS SET FROM RIGHT
m_lOnBits(0) = 1 ' 00000000000000000000000000000001
m_lOnBits(1) = 3 ' 00000000000000000000000000000011
m_lOnBits(2) = 7 ' 00000000000000000000000000000111
m_lOnBits(3) = 15 ' 00000000000000000000000000001111
m_lOnBits(4) = 31 ' 00000000000000000000000000011111
m_lOnBits(5) = 63 ' 00000000000000000000000000111111
m_lOnBits(6) = 127 ' 00000000000000000000000001111111
m_lOnBits(7) = 255 ' 00000000000000000000000011111111
m_lOnBits(8) = 511 ' 00000000000000000000000111111111
m_lOnBits(9) = 1023 ' 00000000000000000000001111111111
m_lOnBits(10) = 2047 ' 00000000000000000000011111111111
m_lOnBits(11) = 4095 ' 00000000000000000000111111111111
m_lOnBits(12) = 8191 ' 00000000000000000001111111111111
m_lOnBits(13) = 16383 ' 00000000000000000011111111111111
m_lOnBits(14) = 32767 ' 00000000000000000111111111111111
m_lOnBits(15) = 65535 ' 00000000000000001111111111111111
m_lOnBits(16) = 131071 ' 00000000000000011111111111111111
m_lOnBits(17) = 262143 ' 00000000000000111111111111111111
m_lOnBits(18) = 524287 ' 00000000000001111111111111111111
m_lOnBits(19) = 1048575 ' 00000000000011111111111111111111
m_lOnBits(20) = 2097151 ' 00000000000111111111111111111111
m_lOnBits(21) = 4194303 ' 00000000001111111111111111111111
m_lOnBits(22) = 8388607 ' 00000000011111111111111111111111
m_lOnBits(23) = 16777215 ' 00000000111111111111111111111111
m_lOnBits(24) = 33554431 ' 00000001111111111111111111111111
m_lOnBits(25) = 67108863 ' 00000011111111111111111111111111
m_lOnBits(26) = 134217727 ' 00000111111111111111111111111111
m_lOnBits(27) = 268435455 ' 00001111111111111111111111111111
m_lOnBits(28) = 536870911 ' 00011111111111111111111111111111
m_lOnBits(29) = 1073741823 ' 00111111111111111111111111111111
m_lOnBits(30) = 2147483647 ' 01111111111111111111111111111111
' Could have done this with a loop calculating each value, but simply
' assigning the values is quicker - POWERS OF 2
m_l2Power(0) = 1 ' 00000000000000000000000000000001
m_l2Power(1) = 2 ' 00000000000000000000000000000010
m_l2Power(2) = 4 ' 00000000000000000000000000000100
m_l2Power(3) = 8 ' 00000000000000000000000000001000
m_l2Power(4) = 16 ' 00000000000000000000000000010000
m_l2Power(5) = 32 ' 00000000000000000000000000100000
m_l2Power(6) = 64 ' 00000000000000000000000001000000
m_l2Power(7) = 128 ' 00000000000000000000000010000000
m_l2Power(8) = 256 ' 00000000000000000000000100000000
m_l2Power(9) = 512 ' 00000000000000000000001000000000
m_l2Power(10) = 1024 ' 00000000000000000000010000000000
m_l2Power(11) = 2048 ' 00000000000000000000100000000000
m_l2Power(12) = 4096 ' 00000000000000000001000000000000
m_l2Power(13) = 8192 ' 00000000000000000010000000000000
m_l2Power(14) = 16384 ' 00000000000000000100000000000000
m_l2Power(15) = 32768 ' 00000000000000001000000000000000
m_l2Power(16) = 65536 ' 00000000000000010000000000000000
m_l2Power(17) = 131072 ' 00000000000000100000000000000000
m_l2Power(18) = 262144 ' 00000000000001000000000000000000
m_l2Power(19) = 524288 ' 00000000000010000000000000000000
m_l2Power(20) = 1048576 ' 00000000000100000000000000000000
m_l2Power(21) = 2097152 ' 00000000001000000000000000000000
m_l2Power(22) = 4194304 ' 00000000010000000000000000000000
m_l2Power(23) = 8388608 ' 00000000100000000000000000000000
m_l2Power(24) = 16777216 ' 00000001000000000000000000000000
m_l2Power(25) = 33554432 ' 00000010000000000000000000000000
m_l2Power(26) = 67108864 ' 00000100000000000000000000000000
m_l2Power(27) = 134217728 ' 00001000000000000000000000000000
m_l2Power(28) = 268435456 ' 00010000000000000000000000000000
m_l2Power(29) = 536870912 ' 00100000000000000000000000000000
m_l2Power(30) = 1073741824 ' 01000000000000000000000000000000
End Sub
'*******************************************************************************
' LShift (FUNCTION)
'
' PARAMETERS:
' (In) - lValue - Long - The value to be shifted
' (In) - iShiftBits - Integer - The number of bits to shift the value by
'
' RETURN VALUE:
' Long - The shifted long integer
'
' DESCRIPTION:
' A left shift takes all the set binary bits and moves them left, in-filling
' with zeros in the vacated bits on the right. This function is equivalent to
' the << operator in Java and C++
'*******************************************************************************
Private Function LShift(ByVal lValue As Long, _
ByVal iShiftBits As Integer) As Long
' NOTE: If you can guarantee that the Shift parameter will be in the
' range 1 to 30 you can safely strip of this first nested if structure for
' speed.
'
' A shift of zero is no shift at all.
If iShiftBits = 0 Then
LShift = lValue
Exit Function
' A shift of 31 will result in the right most bit becoming the left most
' bit and all other bits being cleared
ElseIf iShiftBits = 31 Then
If lValue And 1 Then
LShift = &H80000000
Else
LShift = 0
End If
Exit Function
' A shift of less than zero or more than 31 is undefined
ElseIf iShiftBits < 0 Or iShiftBits > 31 Then
err.Raise 6
End If
' If the left most bit that remains will end up in the negative bit
' position (&H80000000) we would end up with an overflow if we took the
' standard route. We need to strip the left most bit and add it back
' afterwards.
If (lValue And m_l2Power(31 - iShiftBits)) Then
' (Value And OnBits(31 - (Shift + 1))) chops off the left most bits that
' we are shifting into, but also the left most bit we still want as this
' is going to end up in the negative bit marker position (&H80000000).
' After the multiplication/shift we Or the result with &H80000000 to
' turn the negative bit on.
LShift = ((lValue And m_lOnBits(31 - (iShiftBits + 1))) * _
m_l2Power(iShiftBits)) Or &H80000000
Else
' (Value And OnBits(31-Shift)) chops off the left most bits that we are
' shifting into so we do not get an overflow error when we do the
' multiplication/shift
LShift = ((lValue And m_lOnBits(31 - iShiftBits)) * _
m_l2Power(iShiftBits))
End If
End Function
'*******************************************************************************
' RShift (FUNCTION)
'
' PARAMETERS:
' (In) - lValue - Long - The value to be shifted
' (In) - iShiftBits - Integer - The number of bits to shift the value by
'
' RETURN VALUE:
' Long - The shifted long integer
'
' DESCRIPTION:
' The right shift of an unsigned long integer involves shifting all the set bits
' to the right and in-filling on the left with zeros. This function is
' equivalent to the >>> operator in Java or the >> operator in C++ when used on
' an unsigned long.
'*******************************************************************************
Private Function RShift(ByVal lValue As Long, _
ByVal iShiftBits As Integer) As Long
' NOTE: If you can guarantee that the Shift parameter will be in the
' range 1 to 30 you can safely strip of this first nested if structure for
' speed.
'
' A shift of zero is no shift at all
If iShiftBits = 0 Then
RShift = lValue
Exit Function
' A shift of 31 will clear all bits and move the left most bit to the right
' most bit position
ElseIf iShiftBits = 31 Then
If lValue And &H80000000 Then
RShift = 1
Else
RShift = 0
End If
Exit Function
' A shift of less than zero or more than 31 is undefined
ElseIf iShiftBits < 0 Or iShiftBits > 31 Then
err.Raise 6
End If
' We do not care about the top most bit or the final bit, the top most bit
' will be taken into account in the next stage, the final bit (whether it
' is an odd number or not) is being shifted into, so we do not give a jot
' about it
RShift = (lValue And &H7FFFFFFE) \ m_l2Power(iShiftBits)
' If the top most bit (&H80000000) was set we need to do things differently
' as in a normal VB signed long integer the top most bit is used to indicate
' the sign of the number, when it is set it is a negative number, so just
' deviding by a factor of 2 as above would not work.
' NOTE: (lValue And &H80000000) is equivalent to (lValue < 0), you could
' get a very marginal speed improvement by changing the test to (lValue < 0)
If (lValue And &H80000000) Then
' We take the value computed so far, and then add the left most negative
' bit after it has been shifted to the right the appropriate number of
' places
RShift = (RShift Or (&H40000000 \ m_l2Power(iShiftBits - 1)))
End If
End Function
'*******************************************************************************
' RShiftSigned (FUNCTION)
'
' PARAMETERS:
' (In) - lValue - Long -
' (In) - iShiftBits - Integer -
'
' RETURN VALUE:
' Long -
'
' DESCRIPTION:
' The right shift of a signed long integer involves shifting all the set bits to
' the right and in-filling on the left with the sign bit (0 if positive, 1 if
' negative. This function is equivalent to the >> operator in Java or the >>
' operator in C++ when used on a signed long integer. Not used in this class,
' but included for completeness.
'*******************************************************************************
Private Function RShiftSigned(ByVal lValue As Long, _
ByVal iShiftBits As Integer) As Long
' NOTE: If you can guarantee that the Shift parameter will be in the
' range 1 to 30 you can safely strip of this first nested if structure for
' speed.
'
' A shift of zero is no shift at all
If iShiftBits = 0 Then
RShiftSigned = lValue
Exit Function
' A shift of 31 will clear all bits if the left most bit was zero, and will
' set all bits if the left most bit was 1 (a negative indicator)
ElseIf iShiftBits = 31 Then
' NOTE: (lValue And &H80000000) is equivalent to (lValue < 0), you
' could get a very marginal speed improvement by changing the test to
' (lValue < 0)
If (lValue And &H80000000) Then
RShiftSigned = -1
Else
RShiftSigned = 0
End If
Exit Function
' A shift of less than zero or more than 31 is undefined
ElseIf iShiftBits < 0 Or iShiftBits > 31 Then
err.Raise 6
End If
' We get the same result by dividing by the appropriate power of 2 and
' rounding in the negative direction
RShiftSigned = Int(lValue / m_l2Power(iShiftBits))
End Function
'*******************************************************************************
' RotateLeft (FUNCTION)
'
' PARAMETERS:
' (In) - lValue - Long - Value to act on
' (In) - iShiftBits - Integer - Bits to move by
'
' RETURN VALUE:
' Long - Result
'
' DESCRIPTION:
' Rotates the bits in a long integer to the left, those bits falling off the
' left edge are put back on the right edge
'*******************************************************************************
Private Function RotateLeft(ByVal lValue As Long, _
ByVal iShiftBits As Integer) As Long
RotateLeft = LShift(lValue, iShiftBits) Or RShift(lValue, (32 - iShiftBits))
End Function
'*******************************************************************************
' AddUnsigned (FUNCTION)
'
' PARAMETERS:
' (In) - lX - Long - First value
' (In) - lY - Long - Second value
'
' RETURN VALUE:
' Long - Result
'
' DESCRIPTION:
' Adds two potentially large unsigned numbers without overflowing
'*******************************************************************************
Private Function AddUnsigned(ByVal lX As Long, _
ByVal lY As Long) As Long
Dim lX4 As Long
Dim lY4 As Long
Dim lX8 As Long
Dim lY8 As Long
Dim lResult As Long
lX8 = lX And &H80000000
lY8 = lY And &H80000000
lX4 = lX And &H40000000
lY4 = lY And &H40000000
lResult = (lX And &H3FFFFFFF) + (lY And &H3FFFFFFF)
If lX4 And lY4 Then
lResult = lResult Xor &H80000000 Xor lX8 Xor lY8
ElseIf lX4 Or lY4 Then
If lResult And &H40000000 Then
lResult = lResult Xor &HC0000000 Xor lX8 Xor lY8
Else
lResult = lResult Xor &H40000000 Xor lX8 Xor lY8
End If
Else
lResult = lResult Xor lX8 Xor lY8
End If
AddUnsigned = lResult
End Function
'*******************************************************************************
' F (FUNCTION)
'
' DESCRIPTION:
' MD5's F function
'*******************************************************************************
Private Function f(ByVal x As Long, _
ByVal y As Long, _
ByVal z As Long) As Long
f = (x And y) Or ((Not x) And z)
End Function
'*******************************************************************************
' G (FUNCTION)
'
' DESCRIPTION:
' MD5's G function
'*******************************************************************************
Private Function G(ByVal x As Long, _
ByVal y As Long, _
ByVal z As Long) As Long
G = (x And z) Or (y And (Not z))
End Function
'*******************************************************************************
' H (FUNCTION)
'
' DESCRIPTION:
' MD5's H function
'*******************************************************************************
Private Function H(ByVal x As Long, _
ByVal y As Long, _
ByVal z As Long) As Long
H = (x Xor y Xor z)
End Function
'*******************************************************************************
' I (FUNCTION)
'
' DESCRIPTION:
' MD5's I function
'*******************************************************************************
Private Function i(ByVal x As Long, _
ByVal y As Long, _
ByVal z As Long) As Long
i = (y Xor (x Or (Not z)))
End Function
'*******************************************************************************
' FF (SUB)
'
' DESCRIPTION:
' MD5's FF procedure
'*******************************************************************************
Private Sub FF(a As Long, _
ByVal b As Long, _
ByVal c As Long, _
ByVal d As Long, _
ByVal x As Long, _
ByVal s As Long, _
ByVal ac As Long)
a = AddUnsigned(a, AddUnsigned(AddUnsigned(f(b, c, d), x), ac))
a = RotateLeft(a, s)
a = AddUnsigned(a, b)
End Sub
'*******************************************************************************
' GG (SUB)
'
' DESCRIPTION:
' MD5's GG procedure
'*******************************************************************************
Private Sub GG(a As Long, _
ByVal b As Long, _
ByVal c As Long, _
ByVal d As Long, _
ByVal x As Long, _
ByVal s As Long, _
ByVal ac As Long)
a = AddUnsigned(a, AddUnsigned(AddUnsigned(G(b, c, d), x), ac))
a = RotateLeft(a, s)
a = AddUnsigned(a, b)
End Sub
'*******************************************************************************
' HH (SUB)
'
' DESCRIPTION:
' MD5's HH procedure
'*******************************************************************************
Private Sub HH(a As Long, _
ByVal b As Long, _
ByVal c As Long, _
ByVal d As Long, _
ByVal x As Long, _
ByVal s As Long, _
ByVal ac As Long)
a = AddUnsigned(a, AddUnsigned(AddUnsigned(H(b, c, d), x), ac))
a = RotateLeft(a, s)
a = AddUnsigned(a, b)
End Sub
'*******************************************************************************
' II (SUB)
'
' DESCRIPTION:
' MD5's II procedure
'*******************************************************************************
Private Sub II(a As Long, _
ByVal b As Long, _
ByVal c As Long, _
ByVal d As Long, _
ByVal x As Long, _
ByVal s As Long, _
ByVal ac As Long)
a = AddUnsigned(a, AddUnsigned(AddUnsigned(i(b, c, d), x), ac))
a = RotateLeft(a, s)
a = AddUnsigned(a, b)
End Sub
'*******************************************************************************
' ConvertToWordArray (FUNCTION)
'
' PARAMETERS:
' (In/Out) - sMessage - String - String message
'
' RETURN VALUE:
' Long() - Converted message as long array
'
' DESCRIPTION:
' Takes the string message and puts it in a long array with padding according to
' the MD5 rules.
'*******************************************************************************
Private Function ConvertToWordArray(sMessage As String) As Long()
Dim lMessageLength As Long
Dim lNumberOfWords As Long
Dim lWordArray() As Long
Dim lBytePosition As Long
Dim lByteCount As Long
Dim lWordCount As Long
Const MODULUS_BITS As Long = 512
Const CONGRUENT_BITS As Long = 448
lMessageLength = Len(sMessage)
' Get padded number of words. Message needs to be congruent to 448 bits,
' modulo 512 bits. If it is exactly congruent to 448 bits, modulo 512 bits
' it must still have another 512 bits added. 512 bits = 64 bytes
' (or 16 * 4 byte words), 448 bits = 56 bytes. This means lMessageSize must
' be a multiple of 16 (i.e. 16 * 4 (bytes) * 8 (bits))
lNumberOfWords = (((lMessageLength + _
((MODULUS_BITS - CONGRUENT_BITS) \ BITS_TO_A_BYTE)) \ _
(MODULUS_BITS \ BITS_TO_A_BYTE)) + 1) * _
(MODULUS_BITS \ BITS_TO_A_WORD)
ReDim lWordArray(lNumberOfWords - 1)
' Combine each block of 4 bytes (ascii code of character) into one long
' value and store in the message. The high-order (most significant) bit of
' each byte is listed first. However, the low-order (least significant) byte
' is given first in each word.
lBytePosition = 0
lByteCount = 0
Do Until lByteCount >= lMessageLength
' Each word is 4 bytes
lWordCount = lByteCount \ BYTES_TO_A_WORD
' The bytes are put in the word from the right most edge
lBytePosition = (lByteCount Mod BYTES_TO_A_WORD) * BITS_TO_A_BYTE
lWordArray(lWordCount) = lWordArray(lWordCount) Or _
LShift(AscB(Mid(sMessage, lByteCount + 1, 1)), lBytePosition)
lByteCount = lByteCount + 1
Loop
' Terminate according to MD5 rules with a 1 bit, zeros and the length in
' bits stored in the last two words
lWordCount = lByteCount \ BYTES_TO_A_WORD
lBytePosition = (lByteCount Mod BYTES_TO_A_WORD) * BITS_TO_A_BYTE
' Add a terminating 1 bit, all the rest of the bits to the end of the
' word array will default to zero
lWordArray(lWordCount) = lWordArray(lWordCount) Or _
LShift(&H80, lBytePosition)
' We put the length of the message in bits into the last two words, to get
' the length in bits we need to multiply by 8 (or left shift 3). This left
' shifted value is put in the first word. Any bits shifted off the left edge
' need to be put in the second word, we can work out which bits by shifting
' right the length by 29 bits.
lWordArray(lNumberOfWords - 2) = LShift(lMessageLength, 3)
lWordArray(lNumberOfWords - 1) = RShift(lMessageLength, 29)
ConvertToWordArray = lWordArray
End Function
'*******************************************************************************
' WordToHex (FUNCTION)
'
' PARAMETERS:
' (In) - lValue - Long - Long value to convert
'
' RETURN VALUE:
' String - Hex value to return
'
' DESCRIPTION:
' Takes a long integer and due to the bytes reverse order it extracts the
' individual bytes and converts them to hex appending them for an overall hex
' value
'*******************************************************************************
Private Function WordToHex(ByVal lValue As Long) As String
Dim lByte As Long
Dim lCount As Long
For lCount = 0 To 3
lByte = RShift(lValue, lCount * BITS_TO_A_BYTE) And _
m_lOnBits(BITS_TO_A_BYTE - 1)
WordToHex = WordToHex & Right("0" & Hex(lByte), 2)
Next
End Function
'*******************************************************************************
' MD5 (FUNCTION)
'
' PARAMETERS:
' (In/Out) - sMessage - String - String to be digested
'
' RETURN VALUE:
' String - The MD5 digest
'
' DESCRIPTION:
' This function takes a string message and generates an MD5 digest for it.
' sMessage can be up to the VB string length limit of 2^31 (approx. 2 billion)
' characters.
'
' NOTE: Due to the way in which the string is processed the routine assumes a
' single byte character set. VB passes unicode (2-byte) character strings, the
' ConvertToWordArray function uses on the first byte for each character. This
' has been done this way for ease of use, to make the routine truely portable
' you could accept a byte array instead, it would then be up to the calling
' routine to make sure that the byte array is generated from their string in
' a manner consistent with the string type.
'*******************************************************************************
Public Function md5(sMessage As String) As String
Dim x() As Long
Dim k As Long
Dim AA As Long
Dim BB As Long
Dim cc As Long
Dim DD As Long
Dim a As Long
Dim b As Long
Dim c As Long
Dim d As Long
Const S11 As Long = 7
Const S12 As Long = 12
Const S13 As Long = 17
Const S14 As Long = 22
Const S21 As Long = 5
Const S22 As Long = 9
Const S23 As Long = 14
Const S24 As Long = 20
Const S31 As Long = 4
Const S32 As Long = 11
Const S33 As Long = 16
Const S34 As Long = 23
Const S41 As Long = 6
Const S42 As Long = 10
Const S43 As Long = 15
Const S44 As Long = 21
' Steps 1 and 2. Append padding bits and length and convert to words
x = ConvertToWordArray(sMessage)
' Step 3. Initialise
a = &H67452301
b = &HEFCDAB89
c = &H98BADCFE
d = &H10325476
' Step 4. Process the message in 16-word blocks
For k = 0 To UBound(x) Step 16
AA = a
BB = b
cc = c
DD = d
' The hex number on the end of each of the following procedure calls is
' an element from the 64 element table constructed with
' T(i) = Int(4294967296 * Abs(Sin(i))) where i is 1 to 64.
'
' However, for speed we don't want to calculate the value every time.
FF a, b, c, d, x(k + 0), S11, &HD76AA478
FF d, a, b, c, x(k + 1), S12, &HE8C7B756
FF c, d, a, b, x(k + 2), S13, &H242070DB
FF b, c, d, a, x(k + 3), S14, &HC1BDCEEE
FF a, b, c, d, x(k + 4), S11, &HF57C0FAF
FF d, a, b, c, x(k + 5), S12, &H4787C62A
FF c, d, a, b, x(k + 6), S13, &HA8304613
FF b, c, d, a, x(k + 7), S14, &HFD469501
FF a, b, c, d, x(k + 8), S11, &H698098D8
FF d, a, b, c, x(k + 9), S12, &H8B44F7AF
FF c, d, a, b, x(k + 10), S13, &HFFFF5BB1
FF b, c, d, a, x(k + 11), S14, &H895CD7BE
FF a, b, c, d, x(k + 12), S11, &H6B901122
FF d, a, b, c, x(k + 13), S12, &HFD987193
FF c, d, a, b, x(k + 14), S13, &HA679438E
FF b, c, d, a, x(k + 15), S14, &H49B40821
GG a, b, c, d, x(k + 1), S21, &HF61E2562
GG d, a, b, c, x(k + 6), S22, &HC040B340
GG c, d, a, b, x(k + 11), S23, &H265E5A51
GG b, c, d, a, x(k + 0), S24, &HE9B6C7AA
GG a, b, c, d, x(k + 5), S21, &HD62F105D
GG d, a, b, c, x(k + 10), S22, &H2441453
GG c, d, a, b, x(k + 15), S23, &HD8A1E681
GG b, c, d, a, x(k + 4), S24, &HE7D3FBC8
GG a, b, c, d, x(k + 9), S21, &H21E1CDE6
GG d, a, b, c, x(k + 14), S22, &HC33707D6
GG c, d, a, b, x(k + 3), S23, &HF4D50D87
GG b, c, d, a, x(k + 8), S24, &H455A14ED
GG a, b, c, d, x(k + 13), S21, &HA9E3E905
GG d, a, b, c, x(k + 2), S22, &HFCEFA3F8
GG c, d, a, b, x(k + 7), S23, &H676F02D9
GG b, c, d, a, x(k + 12), S24, &H8D2A4C8A
HH a, b, c, d, x(k + 5), S31, &HFFFA3942
HH d, a, b, c, x(k + 8), S32, &H8771F681
HH c, d, a, b, x(k + 11), S33, &H6D9D6122
HH b, c, d, a, x(k + 14), S34, &HFDE5380C
HH a, b, c, d, x(k + 1), S31, &HA4BEEA44
HH d, a, b, c, x(k + 4), S32, &H4BDECFA9
HH c, d, a, b, x(k + 7), S33, &HF6BB4B60
HH b, c, d, a, x(k + 10), S34, &HBEBFBC70
HH a, b, c, d, x(k + 13), S31, &H289B7EC6
HH d, a, b, c, x(k + 0), S32, &HEAA127FA
HH c, d, a, b, x(k + 3), S33, &HD4EF3085
HH b, c, d, a, x(k + 6), S34, &H4881D05
HH a, b, c, d, x(k + 9), S31, &HD9D4D039
HH d, a, b, c, x(k + 12), S32, &HE6DB99E5
HH c, d, a, b, x(k + 15), S33, &H1FA27CF8
HH b, c, d, a, x(k + 2), S34, &HC4AC5665
II a, b, c, d, x(k + 0), S41, &HF4292244
II d, a, b, c, x(k + 7), S42, &H432AFF97
II c, d, a, b, x(k + 14), S43, &HAB9423A7
II b, c, d, a, x(k + 5), S44, &HFC93A039
II a, b, c, d, x(k + 12), S41, &H655B59C3
II d, a, b, c, x(k + 3), S42, &H8F0CCC92
II c, d, a, b, x(k + 10), S43, &HFFEFF47D
II b, c, d, a, x(k + 1), S44, &H85845DD1
II a, b, c, d, x(k + 8), S41, &H6FA87E4F
II d, a, b, c, x(k + 15), S42, &HFE2CE6E0
II c, d, a, b, x(k + 6), S43, &HA3014314
II b, c, d, a, x(k + 13), S44, &H4E0811A1
II a, b, c, d, x(k + 4), S41, &HF7537E82
II d, a, b, c, x(k + 11), S42, &HBD3AF235
II c, d, a, b, x(k + 2), S43, &H2AD7D2BB
II b, c, d, a, x(k + 9), S44, &HEB86D391
a = AddUnsigned(a, AA)
b = AddUnsigned(b, BB)
c = AddUnsigned(c, cc)
d = AddUnsigned(d, DD)
Next
' Step 5. Output the 128 bit digest
md5 = LCase(WordToHex(a) & WordToHex(b) & WordToHex(c) & WordToHex(d))
End Function |