1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
|
// Copyright (c) 2005 Intel Corporation
// All Rights Reserved
//
// CPUCount.cpp : Detects three forms of hardware multi-threading support across IA-32 platform
// The three forms of HW multithreading are: Multi-processor, Multi-core, and
// HyperThreading Technology.
// This application enumerates all the logical processors enabled by OS and BIOS,
// determine the HW topology of these enabled logical processors in the system
// using information provided by CPUID instruction.
// A multi-processing system can support any combination of the three forms of HW
// multi-threading support. The relevant topology can be identified using a
// three level decomposition of the "initial APIC ID" into
// Package_id, core_id, and SMT_id. Such decomposition provides a three-level map of
// the topology of hardware resources and
// allow multi-threaded software to manage shared hardware resources in
// the platform to reduce resource contention
// Multicore detection algorithm for processor and cache topology requires
// all leaf functions of CPUID instructions be available. System administrator
// must ensure BIOS settings is not configured to restrict CPUID functionalities.
//-------------------------------------------------------------------------------------------------
#define HWD_MT_BIT 0x10000000 // EDX[28] Bit 28 is set if HT or multi-core is supported
#define NUM_LOGICAL_BITS 0x00FF0000 // EBX[23:16] Bit 16-23 in ebx contains the number of logical
// processors per physical processor when execute cpuid with
// eax set to 1
#define NUM_CORE_BITS 0xFC000000 // EAX[31:26] Bit 26-31 in eax contains the number of cores minus one
// per physical processor when execute cpuid with
// eax set to 4.
#define INITIAL_APIC_ID_BITS 0xFF000000 // EBX[31:24] Bits 24-31 (8 bits) return the 8-bit unique
// initial APIC ID for the processor this code is running on.
// Status Flag
#define SINGLE_CORE_AND_HT_ENABLED 1
#define SINGLE_CORE_AND_HT_DISABLED 2
#define SINGLE_CORE_AND_HT_NOT_CAPABLE 4
#define MULTI_CORE_AND_HT_NOT_CAPABLE 5
#define MULTI_CORE_AND_HT_ENABLED 6
#define MULTI_CORE_AND_HT_DISABLED 7
#define USER_CONFIG_ISSUE 8
unsigned int CpuIDSupported(void);
unsigned int GenuineIntel(void);
unsigned int HWD_MTSupported(void);
unsigned int MaxLogicalProcPerPhysicalProc(void);
unsigned int MaxCorePerPhysicalProc(void);
unsigned int find_maskwidth(unsigned int);
unsigned char GetAPIC_ID(void);
unsigned char GetNzbSubID(unsigned char,
unsigned char,
unsigned char);
unsigned char CPUCount(unsigned int *,
unsigned int *,
unsigned int *);
// Define constant LINUX to compile under Linux
#ifdef LINUX
// The Linux source code listing can be compiled using Linux kernel verison 2.6
// or higher (e.g. RH 4AS-2.8 using GCC 3.4.4).
// Due to syntax variances of Linux affinity APIs with earlier kernel versions
// and dependence on glibc library versions, compilation on Linux environment
// with older kernels and compilers may require kernel patches or compiler upgrades.
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sched.h>
#define DWORD unsigned long
#else
#include <windows.h>
#endif
#include <stdio.h>
#include <assert.h>
char g_s3Levels[2048];
int main(void)
{
unsigned int TotAvailLogical = 0, // Number of available logical CPU per CORE
TotAvailCore = 0, // Number of available cores per physical processor
PhysicalNum = 0; // Total number of physical processors
unsigned char StatusFlag = 0;
int MaxLPPerCore;
if (CpuIDSupported() < 4) { // CPUID does not report leaf 4 information
printf("\nUser Warning:\n CPUID Leaf 4 is not supported or disabled. Please check \
\n BIOS and correct system configuration error if leaf 4 is disabled. \n");
}
StatusFlag = CPUCount(&TotAvailLogical, &TotAvailCore, &PhysicalNum);
if( USER_CONFIG_ISSUE == StatusFlag) {
printf("User Configuration Error: Not all logical processors in the system are enabled \
while running this process. Please rerun this application after make corrections. \n");
exit(1);
}
printf("\n----Counting Hardware MultiThreading Capabilities and Availability ---------- \n\n");
printf("This application displays information on three forms of hardware multithreading\n");
printf("capability and their availability to apps. The three forms of capabilities are:\n");
printf("multi-processor (MP), Multi-core (core), and HyperThreading Technology (HT).\n");
printf("\nHardware capability results represents the maximum number provided in hardware.\n");
printf("Note, Bios/OS or experienced user can make configuration changes resulting in \n");
printf("less-than-full HW capabilities are available to applications.\n");
printf("For best result, the operator is responsible to configure the BIOS/OS such that\n");
printf("full hardware multi-threading capabilities are enabled.\n");
printf("\n---------------------------------------------------------------------------- \n\n\n");
printf("\nCapabilities:\n\n");
switch(StatusFlag)
{
case MULTI_CORE_AND_HT_NOT_CAPABLE:
printf("\tHyper-Threading Technology: not capable \n\tMulti-core: Yes \n\tMulti-processor: ");
if (PhysicalNum > 1) printf("yes\n"); else printf("No\n");
break;
case SINGLE_CORE_AND_HT_NOT_CAPABLE:
printf("\tHyper-Threading Technology: Not capable \n\tMulti-core: No \n\tMulti-processor: ");
if (PhysicalNum > 1) printf("yes\n"); else printf("No\n");
break;
case SINGLE_CORE_AND_HT_DISABLED:
printf("\tHyper-Threading Technology: Disabled \n\tMulti-core: No \n\tMulti-processor: ");
if (PhysicalNum > 1) printf("yes\n"); else printf("No\n");
break;
case SINGLE_CORE_AND_HT_ENABLED:
printf("\tHyper-Threading Technology: Enabled \n\tMulti-core: No \n\tMulti-processor: ");
if (PhysicalNum > 1) printf("yes\n"); else printf("No\n");
break;
case MULTI_CORE_AND_HT_DISABLED:
printf("\tHyper-Threading Technology: Disabled \n\tMulti-core: Yes \n\tMulti-processor: ");
if (PhysicalNum > 1) printf("yes\n"); else printf("No\n");
break;
case MULTI_CORE_AND_HT_ENABLED:
printf("\tHyper-Threading Technology: Enabled \n\tMulti-core: Yes \n\tMulti-processor: ");
if (PhysicalNum > 1) printf("yes\n"); else printf("No\n");
break;
}
printf("\n\nHardware capability and its availability to applications: \n");
printf("\n System wide availability: %d physical processors, %d cores, %d logical processors\n", \
PhysicalNum, TotAvailCore, TotAvailLogical);
MaxLPPerCore = MaxLogicalProcPerPhysicalProc() / MaxCorePerPhysicalProc() ;
printf(" Multi-core capabililty : %d cores per package \n", MaxCorePerPhysicalProc());
printf(" HT capability: %d logical processors per core \n", MaxLPPerCore);
assert (PhysicalNum * MaxCorePerPhysicalProc() >= TotAvailCore);
assert (PhysicalNum * MaxLogicalProcPerPhysicalProc() >= TotAvailLogical);
if( PhysicalNum * MaxCorePerPhysicalProc() > TotAvailCore) printf("\n Not all cores in the system are enabled for this application.\n");
else printf("\n All cores in the system are enabled for this application.\n");
printf("\n\nRelationships between OS affinity mask, Initial APIC ID, and 3-level sub-IDs: \n");
printf("\n%s", g_s3Levels);
printf("\n\nPress Enter To Continue\n");
getchar();
return 0;
}
//
// CpuIDSupported will return 0 if CPUID instruction is unavailable. Otherwise, it will return
// the maximum supported standard function.
//
unsigned int CpuIDSupported(void)
{
unsigned int MaxInputValue;
// If CPUID instruction is supported
#ifdef LINUX
try
{
MaxInputValue = 0;
// call cpuid with eax = 0
__asm
{
"xorl %%eax,%%eax\n\t"
"cpuid\n\t"
: "=a" (MaxInputValue)
:
: "%ebx", "%ecx", "%edx"
}
}
catch (...)
{
return(0); // cpuid instruction is unavailable
}
#else //Win32
try
{
MaxInputValue = 0;
// call cpuid with eax = 0
asm
(
"xor %eax, %eax"
"cpuid"
"mov %eax, $_MaxInputValue"
);
}
catch (...)
{
return(0); // cpuid instruction is unavailable
}
#endif
return MaxInputValue;
}
//
// GenuineIntel will return 0 if the processor is not a Genuine Intel Processor
//
unsigned int GenuineIntel(void)
{
#ifdef LINUX
unsigned int VendorIDb = 0,VendorIDd = 0, VendorIDc = 0;
try
// If CPUID instruction is supported
{
// Get vendor id string
asm
(
//get the vendor string
// call cpuid with eax = 0
"xorl %%eax, %%eax\n\t"
"cpuid\n\t"
: "=b" (VendorIDb),
"=d" (VendorIDd),
"=c" (VendorIDc)
:
: "%eax"
);
}
catch(...)
{
return(0); // cpuid instruction is unavailable
}
return ( (VendorIDb == 'uneG') &&
(VendorIDd == 'Ieni') &&
(VendorIDc == 'letn'));
#else
unsigned int VendorID[3] = {0, 0, 0};
try // If CPUID instruction is supported
{
asm
(
"xor %eax, %%eax" // call cpuid with eax = 0
"cpuid" // Get vendor id string
"mov %exb,$_VendorID"
"mov %edx,$_VendorID + 4"
"mov %ecx,$_VendorID + 8"
);
}
catch (...)
{
return(0); unsigned int MaxInputValue =0;
// cpuid instruction is unavailable
}
return ( (VendorID[0] == 'uneG') &&
(VendorID[1] == 'Ieni') &&
(VendorID[2] == 'letn'));
}
#endif
//}
//
// Function returns the maximum cores per physical package. Note that the number of
// AVAILABLE cores per physical to be used by an application might be less than this
// maximum value.
//
unsigned int MaxCorePerPhysicalProc(void)
{
unsigned int Regeax = 0;
if (!HWD_MTSupported()) return (unsigned int) 1; // Single core
#ifdef LINUX
{
asm
(
"xorl %eax, %eax\n\t"
"cpuid\n\t"
"cmpl $4, %eax\n\t" // check if cpuid supports leaf 4
"jl .single_core\n\t" // Single core
"movl $4, %eax\n\t"
"movl $0, %ecx\n\t" // start with index = 0; Leaf 4 reports
); // at least one valid cache level
asm
(
"cpuid"
: "=a" (Regeax)
:
: "%ebx", "%ecx", "%edx"
);
asm
(
"jmp .multi_core\n"
".single_core:\n\t"
"xor %eax, %eax\n"
".multi_core:"
);
}
#else
asm
(
"xor %eax, %eax"
"cpuid"
"cmp %eax, 4" // check if cpuid supports leaf 4
"jl .single_core" // Single core
"mov 4,%eax"
"mov 0,%ecx" // start with index = 0; Leaf 4 reports
"cpuid" // at least one valid cache level
"mov %eax,$_Regeax"
"jmp .multi_core"
".single_core:"
"xor %eax, %eax"
".multi_core:"
);
#endif
return (unsigned int)((Regeax & NUM_CORE_BITS) >> 26)+1;
}
//
// The function returns 0 when the hardware multi-threaded bit is not set.
//
unsigned int HWD_MTSupported(void)
{
unsigned int Regedx = 0;
if ((CpuIDSupported() >= 1) && GenuineIntel())
{
#ifdef LINUX
asm
(
"movl $1,%%eax\n\t"
"cpuid"
: "=d" (Regedx)
:
: "%eax","%ebx","%ecx"
);
#else
asm
(
"mov 1,%eax"
"cpuid"
"mov %edx,$_Regedx"
);
#endif
}
return (Regedx & HWD_MT_BIT);
}
//
// Function returns the maximum logical processors per physical package. Note that the number of
// AVAILABLE logical processors per physical to be used by an application might be less than this
// maximum value.
//
unsigned int MaxLogicalProcPerPhysicalProc(void)
{
unsigned int Regebx = 0;
if (!HWD_MTSupported()) return (unsigned int) 1;
#ifdef LINUX
asm
(
"movl $1,%%eax\n\t"
"cpuid"
: "=b" (Regebx)
:
: "%eax","%ecx","%edx"
);
#else
asm
(
"mov $1,%eax"
"cpuid"
"mov %ebx,$_Regebx"
);
#endif
return (unsigned int) ((Regebx & NUM_LOGICAL_BITS) >> 16);
}
unsigned char GetAPIC_ID(void)
{
unsigned int Regebx = 0;
#ifdef LINUX
asm
(
"movl $1, %%eax\n\t"
"cpuid"
: "=b" (Regebx)
:
: "%eax","%ecx","%edx"
);
#else
asm
(
"mov $1,%eax"
"cpuid"
"mov %ebx,$_Regebx"
);
#endif
return (unsigned char) ((Regebx & INITIAL_APIC_ID_BITS) >> 24);
}
//
// Determine the width of the bit field that can represent the value count_item.
//
unsigned int find_maskwidth(unsigned int CountItem)
{
unsigned int MaskWidth,
count = CountItem;
#ifdef LINUX
asm
(
#ifdef __x86_64__ // define constant to compile
"push %%rcx\n\t" // under 64-bit Linux
"push %%rax\n\t"
#else
"pushl %%ecx\n\t"
"pushl %%eax\n\t"
#endif
// "movl $count, %%eax\n\t" //done by Assembler below
"xorl %%ecx, %%ecx"
// "movl %%ecx, MaskWidth\n\t" //done by Assembler below
: "=c" (MaskWidth)
: "a" (count)
// : "%ecx", "%eax" We don't list these as clobbered because we don't want the assembler
//to put them back when we are done
);
asm
(
"decl %%eax\n\t"
"bsrw %%ax,%%cx\n\t"
"jz next\n\t"
"incw %%cx\n\t"
// "movl %%ecx, MaskWidth\n" //done by Assembler below
: "=c" (MaskWidth)
:
);
asm
(
"next:\n\t"
#ifdef __x86_64__
"pop %rax\n\t"
"pop %rcx"
#else
"popl %eax\n\t"
"popl %ecx"
#endif
);
#else
asm
(
"mov $_count,%eax"
"mov $0,%ecx"
"mov %ecx,$_MaskWidth"
"dec %eax"
"bsr %eax, %ecx"
"jz .next"
"inc %ecx"
"mov %ecx,$_MaskWidth"
".next:"
);
#endif
return MaskWidth;
}
//
// Extract the subset of bit field from the 8-bit value FullID. It returns the 8-bit sub ID value
//
unsigned char GetNzbSubID(unsigned char FullID,
unsigned char MaxSubIDValue,
unsigned char ShiftCount)
{
unsigned int MaskWidth;
unsigned char MaskBits;
MaskWidth = find_maskwidth((unsigned int) MaxSubIDValue);
MaskBits = (0xff << ShiftCount) ^
((unsigned char) (0xff << (ShiftCount + MaskWidth)));
return (FullID & MaskBits);
}
//
//
//
unsigned char CPUCount(unsigned int *TotAvailLogical,
unsigned int *TotAvailCore,
unsigned int *PhysicalNum)
{
unsigned char StatusFlag = 0;
unsigned int numLPEnabled = 0;
DWORD dwAffinityMask;
int j = 0, MaxLPPerCore;
unsigned char apicID, PackageIDMask;
unsigned char tblPkgID[256], tblCoreID[256], tblSMTID[256];
char tmp[256];
g_s3Levels[0] = 0;
*TotAvailCore = 1;
*PhysicalNum = 1;
#ifdef LINUX
//we need to make sure that this process is allowed to run on
//all of the logical processors that the OS itself can run on.
//A process could acquire/inherit affinity settings that restricts the
// current process to run on a subset of all logical processor visible to OS.
// Linux doesn't easily allow us to look at the Affinity Bitmask directly,
// but it does provide an API to test affinity maskbits of the current process
// against each logical processor visible under OS.
int sysNumProcs = sysconf(_SC_NPROCESSORS_CONF); //This will tell us how many
//CPUs are currently enabled.
//this will tell us which processors this process can run on.
cpu_set_t allowedCPUs;
sched_getaffinity(0, sizeof(allowedCPUs), &allowedCPUs);
for (int i = 0; i < sysNumProcs; i++ )
{
if ( CPU_ISSET(i, &allowedCPUs) == 0 )
{
StatusFlag = USER_CONFIG_ISSUE;
return StatusFlag;
}
}
#else
DWORD dwProcessAffinity, dwSystemAffinity;
GetProcessAffinityMask(GetCurrentProcess(),
&dwProcessAffinity,
&dwSystemAffinity);
if (dwProcessAffinity != dwSystemAffinity) // not all CPUs are enabled
{
StatusFlag = USER_CONFIG_ISSUE;
return StatusFlag;
}
#endif
// Assumwe that cores within a package have the SAME number of
// logical processors. Also, values returned by
// MaxLogicalProcPerPhysicalProc and MaxCorePerPhysicalProc do not have
// to be power of 2.
MaxLPPerCore = MaxLogicalProcPerPhysicalProc() / MaxCorePerPhysicalProc();
dwAffinityMask = 1;
#ifdef LINUX
cpu_set_t currentCPU;
while ( j < sysNumProcs )
{
CPU_ZERO(¤tCPU);
CPU_SET(j, ¤tCPU);
if ( sched_setaffinity (0, sizeof(currentCPU), ¤tCPU) == 0 )
{
sleep(0); // Ensure system to switch to the right CPU
#else
while (dwAffinityMask && dwAffinityMask <= dwSystemAffinity)
{
if (SetThreadAffinityMask(GetCurrentThread(), dwAffinityMask))
{
Sleep(0); // Ensure system to switch to the right CPU
#endif
apicID = GetAPIC_ID();
// Store SMT ID and core ID of each logical processor
// Shift vlaue for SMT ID is 0
// Shift value for core ID is the mask width for maximum logical
// processors per core
tblSMTID[j] = GetNzbSubID(apicID, MaxLPPerCore, 0);
tblCoreID[j] = GetNzbSubID(apicID,
MaxCorePerPhysicalProc(),
(unsigned char) find_maskwidth(MaxLPPerCore));
// Extract package ID, assume single cluster.
// Shift value is the mask width for max Logical per package
PackageIDMask = (unsigned char) (0xff <<
find_maskwidth(MaxLogicalProcPerPhysicalProc()));
tblPkgID[j] = apicID & PackageIDMask;
sprintf(tmp," AffinityMask = %d; Initial APIC = %d; Physical ID = %d, Core ID = %d, SMT ID = %d\n",
dwAffinityMask, apicID, tblPkgID[j], tblCoreID[j], tblSMTID[j]);
strcat(g_s3Levels, tmp);
numLPEnabled ++; // Number of available logical processors in the system.
} // if
j++;
dwAffinityMask = 1 << j;
} // while
// restore the affinity setting to its original state
#ifdef LINUX
sched_setaffinity (0, sizeof(allowedCPUs), &allowedCPUs);
sleep(0);
#else
SetThreadAffinityMask(GetCurrentThread(), dwProcessAffinity);
Sleep(0);
#endif
*TotAvailLogical = numLPEnabled;
//
// Count available cores (TotAvailCore) in the system
//
unsigned char CoreIDBucket[256];
DWORD ProcessorMask, pCoreMask[256];
unsigned int i, ProcessorNum;
CoreIDBucket[0] = tblPkgID[0] | tblCoreID[0];
ProcessorMask = 1;
pCoreMask[0] = ProcessorMask;
for (ProcessorNum = 1; ProcessorNum < numLPEnabled; ProcessorNum++)
{
ProcessorMask <<= 1;
for (i = 0; i < *TotAvailCore; i++)
{
// Comparing bit-fields of logical processors residing in different packages
// Assuming the bit-masks are the same on all processors in the system.
if ((tblPkgID[ProcessorNum] | tblCoreID[ProcessorNum]) == CoreIDBucket[i])
{
pCoreMask[i] |= ProcessorMask;
break;
}
} // for i
if (i == *TotAvailCore) // did not match any bucket. Start a new one.
{
CoreIDBucket[i] = tblPkgID[ProcessorNum] | tblCoreID[ProcessorNum];
pCoreMask[i] = ProcessorMask;
(*TotAvailCore)++; // Number of available cores in the system
}
} // for ProcessorNum
//
// Count physical processor (PhysicalNum) in the system
//
unsigned char PackageIDBucket[256];
DWORD pPackageMask[256];
PackageIDBucket[0] = tblPkgID[0];
ProcessorMask = 1;
pPackageMask[0] = ProcessorMask;
for (ProcessorNum = 1; ProcessorNum < numLPEnabled; ProcessorNum++)
{
ProcessorMask <<= 1;
for (i = 0; i < *PhysicalNum; i++)
{
// Comparing bit-fields of logical processors residing in different packages
// Assuming the bit-masks are the same on all processors in the system.
if (tblPkgID[ProcessorNum]== PackageIDBucket[i])
{
pPackageMask[i] |= ProcessorMask;
break;
}
} // for i
if (i == *PhysicalNum) // did not match any bucket. Start a new one.
{
PackageIDBucket[i] = tblPkgID[ProcessorNum];
pPackageMask[i] = ProcessorMask;
(*PhysicalNum)++; // Total number of physical processors in the system
}
} // for ProcessorNum
//
// Check to see if the system is multi-core
// Check if the system is hyper-threading
//
if (*TotAvailCore > *PhysicalNum)
{
// Multi-core
if (MaxLPPerCore == 1)
StatusFlag = MULTI_CORE_AND_HT_NOT_CAPABLE;
else if (numLPEnabled > *TotAvailCore)
StatusFlag = MULTI_CORE_AND_HT_ENABLED;
else StatusFlag = MULTI_CORE_AND_HT_DISABLED;
}
else
{
// Single-core
if (MaxLPPerCore == 1)
StatusFlag = SINGLE_CORE_AND_HT_NOT_CAPABLE;
else if (numLPEnabled > *TotAvailCore)
StatusFlag = SINGLE_CORE_AND_HT_ENABLED;
else StatusFlag = SINGLE_CORE_AND_HT_DISABLED;
}
return StatusFlag;
} |