1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
| #include <iostream>
#include <vector>
using namespace std;
class RSA {
public:
RSA() {}
void generateKeys() {
// Generate two prime numbers, p and q.
p = generatePrime();
q = generatePrime();
// Calculate the modulus, n.
n = p * q;
// Calculate the public exponent, e.
e = rand() % (p - 1) + 1;
// Calculate the private exponent, d.
d = modInverse(e, (p - 1) * (q - 1));
}
string encrypt(string message) {
// Convert the message to a number.
int messageNumber = stoi(message);
// Encrypt the message using the public exponent, e.
int encryptedNumber = pow(messageNumber, e) % n;
// Convert the encrypted number back to a string.
string encryptedMessage = to_string(encryptedNumber);
return encryptedMessage;
}
string decrypt(string encryptedMessage) {
// Convert the encrypted message to a number.
int encryptedNumber = stoi(encryptedMessage);
// Decrypt the message using the private exponent, d.
int decryptedNumber = pow(encryptedNumber, d) % n;
// Convert the decrypted number back to a string.
string decryptedMessage = to_string(decryptedNumber);
return decryptedMessage;
}
private:
int p;
int q;
int n;
int e;
int d;
int generatePrime() {
// Generate a random number between 2 and 1000.
int number = rand() % 1000 + 2;
// Check if the number is prime.
bool isPrime = true;
for (int i = 2; i < number; i++) {
if (number % i == 0) {
isPrime = false;
break;
}
}
// If the number is prime, return it.
if (isPrime) {
return number;
}
// Otherwise, generate another number.
return generatePrime();
}
int modInverse(int a, int m) {
// This function returns the modular inverse of a modulo m.
// Initialize the result to 1.
int result = 1;
// While a is not 0, do the following:
while (a != 0) {
// Calculate the remainder of a divided by m.
int remainder = a % m;
// Calculate the modular inverse of the remainder.
int inverse = modInverse(remainder, m);
// Multiply the result by the inverse.
result = result * inverse % m;
// Subtract the remainder from a.
a = a - remainder;
}
return result;
}
};
int main() {
// Create an RSA object.
RSA rsa;
// Generate the public and private keys.
rsa.generateKeys();
// Print the public and private keys.
cout << "Public key: " << rsa.e << " " << rsa.n << endl;
cout << "Private key: " << rsa.d << " " << rsa.n << endl;
// Encrypt a message.
string message = "Hello, world!";
string encryptedMessage = rsa.encrypt(message);
// Decrypt the message.
string decryptedMessage = rsa.decrypt(encryptedMessage);
// Print the encrypted and decrypted messages.
cout << "Encrypted message: " << encryptedMessage << endl;
cout << "Decrypted message: " << decryptedMessage << endl;
return 0;
} |