1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
| #!/usr/bin/python3
# -*- coding: utf-8 -*-
# import RPi.GPIO as GPIO
from smbus2 import SMBus
from smbus2 import SMBusWrapper
import time
import numpy as np
'''
# SMBbus main functions
from smbus2 import SMBus
# Open i2c bus 1 and read one byte from address 80, offset 0
bus = SMBus(1)
b = bus.read_byte_data(80, 0)
print(b)
bus.close()
# ============= read a byte ====================
from smbus2 import SMBusWrapper
with SMBusWrapper(1) as bus:
b = bus.read_byte_data(80, 0)
print(b)
# ============= write a byte ======================
from smbus2 import SMBusWrapper
with SMBusWrapper(1) as bus:
# Write a byte to address 80, offset 0
data = 45
bus.write_byte_data(80, 0, data)
# ============ bloc of data ==========================
from smbus2 import SMBusWrapper
with SMBusWrapper(1) as bus:
# Read a block of 16 bytes from address 80, offset 0
block = bus.read_i2c_block_data(80, 0, 16)
# Returned value is a list of 16 bytes
print(block)
from smbus2 import SMBusWrapper
with SMBusWrapper(1) as bus:
# Write a block of 8 bytes to address 80 from offset 0
data = [1, 2, 3, 4, 5, 6, 7, 8]
bus.write_i2c_block_data(80, 0, data)
'''
class tea5767 :
def __init__(self):
self.bus = SMBus(1)
self.addr = 0x60
self.Fif = 225000
self.Fref = 32768
# ================== Parameter ==========================================
# while writing bytes
# 1st byte
self.mute = 0 # 1 for mute # 7
self.search_mode = 0 # 1 for search mode # 6
# 1st and 2nd byte
self.PLL = 12234 # 5-0 and 7-0
# 3rd byte
self.search_direction = 0 # 7
self.search_stop_level = np.array([0,1], dtype=np.int8) # 6-5
self.side_injection = 1 # 4
self.mono = 0 # force mono # 3
self.mute_right = 0 # 2
self.mute_left = 0 # 1
self.port1 = 0 # check ready signal # 0
# 4th byte
self.port2 = 0 # 7
self.stanby_mode = 0 # 6
self.band_limit = 0 # 0 for europe # 5
self.clock_freq = 1 # 0 for 13MHz / 1 for 32.768kHz let PLLREF to 0 # 4
self.soft_mute = 0 # 3
self.high_cut_control = 0 # 2
self.stereo_noise_cancelling = 0 # 1
self.search_indicator = 1 # make port1 an output for readyflag # 0
# 5th byte
self.pllref = 0 # 1 to enable external clock reference at 6.5MHz # 7
self.dtc = 0 # change de-emphasis time constant # 6
# while reading bytes
# 1st byte
self.ready_flag = 0 # station have been found # 7
self.band_limit_flag = 0 # band limit reached # 6
# next = pll
# 3rd byte
# stereo => use self.mono # 7
self.IF_counter_result = 0 # pas compris intermediate freq # 6-0
# 4th byte
self.output_level = np.array([0,0,0], dtype=np.int8) # 7-4
self.chip_ID = np.array([0,0,0], dtype=np.int8) # 3-1
# 5th byte = always 0
# ================== Initialise ==========================================
self.writeBytes( self.makeByte() )
def isReady(self) :
'''
self.port1 = value
The software programmable output (SWPORT1) can be programmed to operate as a
tuning indicator output. As long as the IC has not completed a tuning action,
pin SWPORT1 remains LOW. The pin becomes HIGH, when a preset or search tuning is
completed or when a band limit is reached.
'''
def makeByte(self) :
self.block = np.zeros(5, dtype = np.int32)
self.block[0] = self.mute << 7 + \
self.search_mode << 6 + \
self.PLL % 2**6
self.block[1] = self.PLL // 2**6
self.block[2] = 2**7 * self.search_direction + \
2**6 * self.search_stop_level[0] + \
2**5 * self.search_stop_level[1] + \
2**4 * self.side_injection + \
2**3 * self.mono + \
2**2 * self.mute_right + \
2**1 * self.mute_left + \
2**0 * self.port1
self.block[3] = 2**7 * self.port2 + \
2**6 * self.stanby_mode + \
2**5 * self.band_limit + \
2**4 * self.clock_freq + \
2**3 * self.soft_mute + \
2**2 * self.high_cut_control + \
2**1 * self.stereo_noise_cancelling + \
2**0 * self.search_indicator
self.block[4] = 2**7 * self.pllref + \
2**6 * self.dtc
return self.block
def getFreq(self):
block = self.readBytes()
Npll_8_13 = block[0] // 0x3f
Npll_0_7 = block[1]*8**2
Npll= Npll_8_13 + Npll_0_7
F_rf= (Npll * self.Fref / 4) - self.Fif
return F_rf
def setFreq(self,newFreq, mute = 0, search_mode = 0) :
Npll = round( ( 4* (newFreq*10**6 + 225*10**3) ) / 32768 )
Npll_8_13 = Npll // 2**8
Npll_0_7 = Npll % 2**8
newBlock = np.zeros(2, dtype = np.int32)
newBlock = [Npll_8_13, Npll_0_7]
self.writeBytes(newBlock)
# self.PLL = int( 4 * (newFreq + self.Fif) / self.Fref )
# self.writeBytes(self.makeByte())
# print("set = " + str(self.PLL))
# print("la")
def readBytes(self):
with SMBusWrapper(1) as bus:
block = self.bus.read_i2c_block_data(self.addr, 0, 5)
return block
def writeBytes(self, data):
with SMBusWrapper(1) as bus:
self.bus.write_i2c_block_data(self.addr, data[0], data[1::])
TEA = tea5767()
time.sleep(1)
TEA.writeBytes([50,191,176,16,0])
time.sleep(1)
B = TEA.readBytes()
TEA.setFreq(102.5*10**6)
freq = 102.5*10**6
while 1 :
time.sleep(1)
a=input()
if a == "-" :
freq-=0.1*10**6
else :
freq+=0.1*10**6
TEA.setFreq(freq)
# freq2 = TEA.getFreq()
print("freq npt = " + str(freq/10**6))
# print("freq msr = " + str(freq2/10**6))
print("block = " + str(TEA.block))
print('===========================================================')
time.sleep(2)
TEA.bus.close() |