1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
| > df <- read.csv("D:/temp/traits.csv")
> # On supprime les lignes où toutes les variables sont à 0
> df <- (subset(df[,-1],Generaliste != 0 | Specialiste != 0))
> # On calcule les moyennes par Culture et par Annee
> df <- aggregate(. ~ Culture + Annee, data=df, mean)
> # On génère des noms d'observations (lignes) qui deviendront des noms de variables (colonnes) lors de la transposition
> row.names(df) <- paste(df$Culture,df$Annee,sep=".")
> df <- df[,3:15]
> df
Generaliste Specialiste Carnivore Phytophage Omnivore taille1 taille2 taille3 taille4 taille5 Aptere Macroptere Dimorphique
Ble1.2014 100.00000 0.000000 80.952381 0.00000 19.047619 1.587302 41.26984 17.738095 39.40476 0.000000 4.642857 59.00794 36.349206
Ble2.2014 97.36111 2.638889 97.500000 0.00000 2.500000 7.202381 13.61111 8.750000 70.43651 0.000000 2.083333 24.72222 73.194444
Feverole.2014 98.61111 1.388889 98.863636 0.00000 1.136364 0.000000 20.05051 78.813131 0.00000 1.136364 1.388889 97.47475 1.136364
Luz1.2014 87.50000 12.500000 62.500000 0.00000 37.500000 0.000000 37.50000 50.000000 12.50000 0.000000 0.000000 87.50000 12.500000
OrgePr.2014 76.33929 23.660714 100.000000 0.00000 0.000000 14.285714 9.37500 23.065476 53.27381 0.000000 0.000000 37.35119 62.648810
ToLuz.2014 100.00000 0.000000 97.222222 0.00000 2.777778 0.000000 0.00000 100.000000 0.00000 0.000000 0.000000 100.00000 0.000000
Ble2.2015 77.77778 22.222222 44.444444 0.00000 55.555556 22.222222 11.11111 47.222222 19.44444 0.000000 0.000000 88.88889 11.111111
Colza.2015 100.00000 0.000000 62.444088 10.99075 26.565161 0.000000 30.83142 41.448395 27.72018 0.000000 0.000000 96.34836 3.651639
Feverole.2015 100.00000 0.000000 88.072917 0.00000 11.927083 0.781250 26.45682 62.377050 10.38488 0.000000 0.000000 93.72971 6.270292
Luz1.2015 97.80220 2.197802 60.732601 4.67033 34.597070 1.098901 11.33700 65.787546 19.57875 2.197802 0.000000 87.77473 12.225275
Luz2.2015 100.00000 0.000000 13.333333 0.00000 86.666667 6.666667 0.00000 40.000000 53.33333 0.000000 0.000000 86.66667 13.333333
ToLuz.2015 57.95918 42.040816 94.387755 0.00000 5.612245 30.136054 11.90476 7.142857 50.81633 0.000000 0.000000 42.89116 57.108844
Ble1.2016 90.00000 10.000000 17.500000 0.00000 82.500000 10.000000 0.00000 0.000000 90.00000 0.000000 0.000000 92.50000 7.500000
Ble2.2016 100.00000 0.000000 3.750000 0.00000 96.250000 0.000000 0.00000 19.583333 80.41667 0.000000 0.000000 96.25000 3.750000
Luz1.2016 100.00000 0.000000 100.000000 0.00000 0.000000 0.000000 0.00000 100.000000 0.00000 0.000000 0.000000 100.00000 0.000000
Luz2.2016 100.00000 0.000000 75.000000 0.00000 25.000000 25.000000 12.50000 37.500000 25.00000 0.000000 0.000000 75.00000 25.000000
Orge.2016 100.00000 0.000000 4.897959 0.00000 95.102041 0.000000 0.00000 18.367347 81.63265 0.000000 0.000000 95.10204 4.897959
ToLuz.2016 100.00000 0.000000 66.666667 33.33333 0.000000 0.000000 33.33333 0.000000 66.66667 0.000000 0.000000 33.33333 66.666667 |