| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 
 |  
#include "ff++.hpp"
// #ifndef WITH_NO_INIT
// #include "ff++.hpp"
// #include "AFunction_ext.hpp"
// #endif
// using namespace std;
#include <set>
#include <vector>
#include <map>
#include <algorithm>
//#include "msh3.hpp"
// #include <iostream>
using namespace  Fem2D;
// FreeFem glue
class WATERSHED_P1_Op : public E_F0mps
{
public:
    Expression eTh,eff,eret;
 
    static const int n_name_param = 1;
    static basicAC_F0::name_and_type name_param[n_name_param];
    Expression nargs[n_name_param];
public:
    WATERSHED_P1_Op(const basicAC_F0 &  args,Expression tth, Expression fff,Expression rrr)
    : eTh(tth),eff(fff),eret(rrr)
    {
        args.SetNameParam(n_name_param,name_param,nargs);
    }
    AnyType operator()(Stack stack) const;
 
private:
    template<typename T>
    T arg(int i, Stack stack, T a) const {
        return nargs[i]
        ? GetAny< T >( (*nargs[i])(stack) )
        : a;
    }
};
basicAC_F0::name_and_type WATERSHED_P1_Op::name_param[]= {
    {  "eps",  &typeid(double)}
};
// algorithm
typedef int triangle_t;
typedef int vertex_t;
typedef int color_t;
struct fat_vertex_t {
    vertex_t vertex;
    triangle_t triangle;
    int edge;
 
    fat_vertex_t(vertex_t v, triangle_t t, int e)
    : vertex(v), triangle(t), edge(e) {}
    friend bool operator<(fat_vertex_t const& a, fat_vertex_t const& b)
    { return a.vertex < b.vertex; }
 
    friend bool operator==(fat_vertex_t const& a, fat_vertex_t const& b)
    { return a.vertex == b.vertex; }
};
typedef std::vector<fat_vertex_t> vertices_t;
typedef std::pair<fat_vertex_t, double> ver_val_t;
struct cmp_t {
    bool operator()(ver_val_t const& t1, ver_val_t const& t2) const {
        return t1.second < t2.second;
    }
};
typedef std::priority_queue<ver_val_t, std::vector<ver_val_t>, cmp_t> queue_t;
typedef KNM<long> ret_type;
template<typename Func>
void for_each_triangle(Mesh const& Th, triangle_t const triangle0, int const edge0, Func func) {
    int const vertex = Th(triangle0, edge0);
 
    if( !func( triangle0 ) )
      return;
    int edge = edge0;
    int triangle = triangle0;
    for(;;) {
        edge = (edge + 1) % 3;
        if( Th(triangle, edge) == vertex )
            edge = (edge + 1) % 3;
        triangle = Th.ElementAdj( triangle, edge );
        if( triangle == triangle0 )
            return;
 
        if( triangle < 0 )
            break;
 
        if( !func( triangle ) )
            return;
    }
    triangle = triangle0;
    edge = edge0;
    for(;;) {
        edge = (edge - 1) % 3;
        if( Th(triangle, edge) == vertex )
            edge = (edge - 1) % 3;
        triangle = Th.ElementAdj( triangle, edge );
        if( triangle == triangle0 )
            return;
 
        if( triangle < 0 )
            break;
 
        if( !func( triangle ) )
            return;
    }
}
template<typename Func>
struct for_each_neighbor_helper {
    Func func;
    Mesh const& Th;
    bool operator()(triangle_t triangle) {
        for(int e = 0; e < 3; ++e)
            if(! func( Th(triangle, e), triangle, e ) )
                return false;
        return true;
    }
};
template<typename Func>
void for_each_neighbor(Mesh const& Th, triangle_t const triangle0, int const edge0, Func func) {
    for_each_neighbor_helper<Func> help = { func, Th };
    // check adjacent triangles
    for_each_triangle(Th, triangle0, edge0, help);
}
template<typename Cont>
void erase_unique(Cont& cont) {
    std::sort(cont.begin(), cont.end());
    cont.erase(
        std::unique(cont.begin(), cont.end()),
        cont.end()
    );
}
struct maxima_helper {
    KN<double> const& tff;
    double& maxval;
    bool& is_max;
    bool operator()(vertex_t vertex, triangle_t triangle, int edge) const {
        double val = tff[ vertex ];
        if(val > maxval) {
            is_max = false;
            return false;
        }
        return true;
    }
};
static void maxima(Mesh const& Th, KN<double> const& tff, vertices_t& vertices, double epsr)
{
    const int nbt=Th.nt; // nombre de triangles
    // loop over vertices
    for(int it = 0; it < nbt; ++it) {
        int maxiv = 0;
        double maxval = tff[ Th(it,0) ];
        int iv;
        for(iv=1; iv < 3; ++iv) {
            int i = Th(it,iv);
            double val = tff[i];
            if(val > maxval) {
                maxiv = iv;
                maxval = val;
            }
        }
        iv = maxiv;
 
        if(std::abs(maxval) < epsr)
            continue;
        bool is_max = true;
 
        maxima_helper helper = { tff, maxval, is_max };
 
        for_each_neighbor(Th, it, iv, helper);
        if(!is_max)
            continue;
//         std::cout << "FOUND " << it << ' ' << maxiv << ' ' << Th(it, maxiv) << ' ' << maxval << std::endl;
        vertices.push_back(fat_vertex_t( Th(it,maxiv), it, maxiv ));
    }
    erase_unique(vertices);
}
#if 0
static void maxima(Mesh const& Th, KN<double> const& tff, queue_t& roots, std::vector<color_t>& colors, double epsr)
{
    const int nbt=Th.nt; // nombre de triangles
    const int nbv=Th.nv; // nombre de vertices
    enum pixel_type {
        MAXIMUM,
        PLATEAU,
        NON_MAXIMUM
    };
    // the one that increments current_color
    // shall push to roots
    color_t current_color = 1;
    std::vector<bool> visited ( nbv, false );
    auto analyse_neighbors = [&](vertex_t const vertex0, triangle_t const triangle0, int edge0) {
        pixel_type pxl = MAXIMUM;
        for_each_neighbor(Th, triangle0, edge0,
          [&](vertex_t vertex, triangle_t triangle, int edge) {
            if( vertex == vertex0 )
                return true;
            if( tff[vertex] >  tff[vertex0] ) {
                pxl = NON_MAXIMUM;
                return false;
            }
            if( tff[vertex] == tff[vertex0] )
                pxl = PLATEAU;
            return true;
        });
        return pxl;
    };
    auto analyse_plateau = [&](vertex_t const vertex0, triangle_t const triangle0, int edge0) {
        colors[vertex0] = current_color;
        // early exit
        color_t new_label = current_color;
        // do not forget marked nodes
        std::deque<fat_vertex_t> queue;
        queue.push_back({ vertex0, triangle0, edge0 });
        auto it = queue.begin();
        auto const end = queue.end();
        for(; it != end; ++it ) {
            fat_vertex_t const& vv = *it;
            for_each_neighbor(Th, vv.triangle, vv.edge,
              [&](vertex_t vertex, triangle_t triangle, int edge) {
                if( colors[vertex] == -1 && tff[vertex] == tff[vertex0] ) {
                    colors[vertex] = current_color;
                    queue.push_back({ vertex, triangle, edge });
                    visited[vertex] = true;
                }
                else if( tff[vertex] > tff[vertex0] )
                    new_label = -1;
                return true;
            });
        }
        if( new_label == -1 )
            for(fat_vertex_t const& vv : queue)
                colors[vv.vertex] = -1;
        else {
            ++current_color;
            roots.push({ { vertex0, triangle0, edge0 }, tff[vertex0] });
        }
    };
    // loop over vertices
    for(triangle_t triangle = 0; triangle < nbt; ++triangle)
    for(int edge = 0; edge < 3; ++edge) {
        vertex_t vertex = Th( triangle, edge );
        if( visited[vertex] )
            continue;
        pixel_type pxl = analyse_neighbors(vertex, triangle, edge);
        if( pxl == MAXIMUM ) {
            for_each_neighbor(Th, triangle, edge,
              [&](vertex_t vertex2, int,int) {
                ffassert( tff[vertex2] <= tff[vertex] );
                return true;
            });
            colors[vertex] = current_color++;
            roots.push({{ vertex, triangle, edge }, tff[vertex] });
        }
//         else if( pxl == PLATEAU )
//             analyse_plateau(vertex, triangle, edge);
        visited[vertex] = true;
    }
    ffassert( roots.size() == current_color-1 );
}
#endif
struct color_one_neighbor {
    KN<double> const& tff;
    fat_vertex_t const& current;
    std::vector<color_t>& colors;
    color_t const current_color;
    queue_t& queue;
    bool operator()(vertex_t vertex, triangle_t triangle, int edge) {
 
        fat_vertex_t vv ( vertex, triangle, edge );
        if(vertex == current.vertex)
            return true;
        color_t& color = colors[vertex];
        if( color == -1 ) {
            color = current_color;
            queue.push(ver_val_t( vv, tff[vertex] ));
        }
        else if( color != current_color ) {
            color = 0;
            frontier.push_back( vv );
//                 ffassert( tff[vertex] <= tff[current.vertex] ); // TODO ça explose ici
//                 std::cout << "FOUND " << vertex << " -> " << color << std::endl;
        }
        return true;
    }
};
AnyType WATERSHED_P1_Op::operator()(Stack stack) const
{
    MeshPoint *mp(MeshPointStack(stack));
    ret_type& ret = *GetAny<ret_type* >( (*eret)(stack) );
    Mesh* pTh = GetAny<Mesh *>( (*eTh)(stack) );
 
    ffassert(pTh);
    double  epsr = arg(0,stack,1e-5);
    Mesh const& Th = *pTh;
    const int nbv=Th.nv; // nombre de sommet
    const int nbt=Th.nt; // nombre de triangles
    const int nbe=Th.neb; // nombre d'aretes fontiere
    const double unset = -1e-100;
    KN<double> tff(nbv, unset);
    // loop over triangle
    for(int it=0; it < nbt; ++it) {
        for(int iv=0; iv<3; ++iv) {
            int i = Th(it,iv);
            if(tff[i]==unset) {
                mp->setP(pTh,it,iv);
                tff[i]=GetAny<double>((*eff)(stack));
            }
        }
    }
    queue_t queue;
    std::vector<color_t> colors ( nbv, -1 );
    vertices_t frontier;
 
    // prefill
    {
        vertices_t roots;
        maxima(Th, tff, roots, epsr);
        color_t color = 1;
 
        vertices_t::iterator it = roots.begin(), en = roots.end();
        for(; it != en; ++it) {
            fat_vertex_t const& current = *it;
            colors[current.vertex] = color++;
            queue.push(ver_val_t( current, tff[current.vertex] ));
        }
    }
    // loop
    while( !queue.empty() ) {
        fat_vertex_t const current = queue.top().first; queue.pop();
        color_t const current_color = colors[current.vertex];
        ffassert( current_color != -1 );
        if( current_color == 0 )
            continue;
        // check adjacent triangles
        for_each_neighbor(
            Th, current.triangle, current.edge,
            color_one_neighbor(tff, current, colors, current_color, queue)
        );
    }
    erase_unique(frontier);
    std::cout << "OUT " << frontier.size() << std::endl;
    ret.resize(2, frontier.size());
    for(int k = 0; k < frontier.size(); ++k) {
        fat_vertex_t const& vv = frontier[k];
        ret(0, k) = vv.triangle;
        ret(1, k) = vv.edge;
    }
    return 0l;
}
class  WATERSHED_P1: public OneOperator { public: 
    typedef Mesh *pmesh;
    typedef std::pair<FEbase<double, v_fes>*, int> fem_t;
    WATERSHED_P1() : OneOperator(atype<long>(),atype<pmesh>(),atype<double>(), atype<ret_type*>() ) {}
 
    E_F0 * code(const basicAC_F0 & args) const
    {
        return  new WATERSHED_P1_Op( args,
                                  t[0]->CastTo(args[0]),
                                  t[1]->CastTo(args[1]),
                                  t[2]->CastTo(args[2]) );
    }
};
void finit()
{
    Global.Add("watershed","(",new WATERSHED_P1);
}
LOADFUNC(finit); |