Problème basique avec unordered_set
Bonjour, je compile un code qui utilise un unordered_set
j'ai bien #include<unordered_set>,
j'ai bien using namespace std;
j'ai bien utilisé le -std=c0x,
par contre j'ai toujours des tas de Symbol 'unordered_set' could not be resolved à la compilation... une idée ?
....
Après avoir cherché un moment je ne vois pas ce qui cloche a ce sujet en tout cas et ça m’empêche d'avancer donc je mets le détail du code si quelqu un a une idée je suis preneur (j'utilise un unordered_set pour ne pas passer ma vie a vérifier que je n'ai pas déjà intégré un nœud donné au graphe).
Il y a certainement d'autres choses qui clochent que mon problème mentionné ci-dessus mais pour l'instant c'est mon principal.
Code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
#ifndef GRAPH_H_
#define GRAPH_H_
#include<vector>
#include<iterator>
#include<map>
#include<stack>
#include<queue>
#include<unordered_set>
#include "Node.h"
using namespace std;
namespace DD {
template<typename T> class Graph {
public:
enum Mode {PROPRIETARY, NOCARE}; // S'occupe de la destruction des noeuds (PROPRIETARY) ou pas (NOCARE).
private:
bool knowConnex; // Utilisation future
bool knowCycles; // Utilisation future
bool hasCycle; // Utilisation future
int nConnex; // Utilisation future
unordered_set<Node<T>*> nodes;
// vector<typename unordered_set<typename Node<T>*> > connexComp;
Mode mode;
public:
Graph() : /*connexComp(vector<typename unordered_set<typename Node<T>*> >() ),*/ knowConnex(false),
knowCycles(false), nConnex(0), hasCycle(false), mode(NOCARE), nodes(unordered_set<Node<T>*>()){}
bool empty() const {return nodes.empty();}
Graph(Node<T>* pN) : Graph() {
insert(pN);
}
void insert(Node<T>* pN){
if (nodes.find(pN)==nodes.end()){
nodes.insert(pN);
DFIterator dfiterator(pN);
Node<T>* pNN;
while (pNN=*(++dfiterator)) {nodes.insert(pNN);}
}
}
void setMode(Mode M){mode = M;}
// int nCycles() const {return nCycles;}
// int nConnexComp() const {return nConnex;}
// virtual bool isTree() const {return (nCycles()==0) && (nConnexComp()==1);}
virtual ~Graph() {
if (mode==PROPRIETARY) {
auto e=nodes.end();
auto b=nodes.begin();
for(; b!=e; b++) delete *b;
}
}
class DFIterator : public iterator<forward_iterator_tag, Node<T>*>
{
Node<T>* pointedNode;
stack<Node<T>*> nextToVisit;
map<Node<T>*,bool> marked;
int nMarked;
void push(const vector<Node<T>*>& v)
{for(int i=v.size()-1;i>=0;i--) nextToVisit.push(v[i]);}
void markAndPush()
{
marked[pointedNode] = true; nMarked++; push(pointedNode->hookBranches());
}
public :
DFIterator() : pointedNode(0), nextToVisit(stack<Node<T>*>()), marked(map<Node<T>*,bool>), nMarked(0) {}
DFIterator(Node<T>* N) : DFIterator() {
if(N!=nullptr){
pointedNode = N;
markAndPush();
}
}
DFIterator(vector<Node<T>*>::iterator& i) : DFIterator() {
poitedNode = *i; markAndPush();
}
virtual DFIterator operator++(){
if (!pointedNode==0){
while(marked[nextToVisit.top()]&&(!nextToVisit.empty())){nextToVisit.pop();}
if(nextToVisit.empty()){pointedNode=0;}
else{
pointedNode=nextToVisit.top(); nextToVisit.pop();
markAndPush();
}
}
return *this;
}
Node<T>* operator *() {return pointedNode;}
virtual ~DFIterator{}
};
DFIterator beginDF() {if (!empty()) return DFIterator(*(nodes.begin())); return DFIterator();}
class BFIterator {
Node<T>* pointedNode;
queue<Node<T>*> nextToVisit;
map<Node<T>*,bool> marked;
int nMarked;
void push(const vector<Node<T>*>& v)
{for(int i=0;i<v.size();i++) nextToVisit.push(v[i]);}
void markAndPush()
{
marked[pointedNode] = true; nMarked++; push(pointedNode->hookBranches());
}
public :
BFIterator() : pointedNode(0), nextToVisit(queue<Node<T>*>()), marked(map<Node<T>*,bool>), nMarked(0) {}
BFIterator(Node<T>* N) : BFIterator() {
if(N!=nullptr){
pointedNode = N;
markAndPush();
}
}
BFIterator(vector<Node<T>*>::iterator& i) : BFIterator() {
pointedNode = *i; markAndPush();
}
virtual DFIterator operator++(){
if (!pointedNode==0){
while(marked[nextToVisit.front()]&&(!nextToVisit.empty())){nextToVisit.pop();}
if(nextToVisit.empty()){pointedNode=nullptr;}
else{
pointedNode=nextToVisit.front(); nextToVisit.pop();
markAndPush();
}
}
return *this;
}
Node<T>* operator *() {return pointedNode;}
virtual ~BFIterator {}
};
BFIterator beginBF() {if (!nodes.empty()) return BFIterator(*(nodes.begin())); return BFIterator();}
}; |