1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
| all_data_label=[];
for k=1:length(m)
if k<= 53
all_data_label(k,1)=1;
else
all_data_label(k,1)=2;
end
end
R=[];
for j=1:500
tn=0; tp=0; ov=0;
testing_ind=[];
for i=1:length(m)
if randn>0.8
testing_ind=[testing_ind,i];
end;
end;
training_ind=setxor(1:length(m),testing_ind);
[qdaClass, err, p, logp, coeff]=classify(m(testing_ind, :), m(training_ind, :), all_data_label(training_ind, :), 'quadratic');
[qdaRes, grpOrder]=confusionmat(all_data_label(testing_ind, :), qdaClass);
tn=qdaRes(1,1)/(qdaRes(1,1)+qdaRes(1,2));
tp=qdaRes(2,2)/(qdaRes(2,1)+qdaRes(2,2));
ov=(qdaRes(1,1)+qdaRes(2,2))/sum(sum(qdaRes));
R(j,1)=tn; R(j,2)=tp; R(j,3)=ov;
end
true_negative=100*mean(R(:,1));
true_positive=100*mean(R(:,2));
overall=100*mean(R(:,3)); |