1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
|
function traite_Callback(hObject, eventdata, handles)
% hObject handle to traite (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global meas;
load fisheriris; % Fisher's iris data (1936
axes(handles.axes3);
[JFP,T,l,V,U] = FPCMfing( meas,3,2);
plot3(meas(1:50,1),meas(1:50,2),meas(1:50,3),'< b'),grid;
hold on
plot3(meas(51:100,1),meas(51:100,2),meas(51:100,3),'pentagram r'),grid;
plot3(meas(101:150,1),meas(101:150,2),meas(101:150,3),'d g'),grid;
plot3(V(:,1),V(:,2),V(:,3),'ko','markerfacecolor','k');
% plot3(V(:,1),V(:,2),V(:,3),'kx','markerfacecolor','k');
hold off
xlabel(' Setal Length'); ylabel('Sepal Width'); zlabel('Petal Length');
view(-137,10);
grid on
title('classification Floue Possibilitic FPCM');
meas=handles.metricdata.meas;
c=handles.metricdata.c;
m=handles.metricdata.m;
popup_sel_index = get(handles.popupmenu2, 'Value');
switch popup_sel_index
case 1
case 2
%-----------------------la méthodeACP------------------------
case 3
%------------------------la méthode FPCM-----------------------
[JFP,T,l,V,U] = FPCMfing( meas,c,m);
handles.metricdata.l=l;
handles.metricdata.U=U;
handles.metricdata.V=V;
handles.metricdata.T=T;
handles.metricdata.JFP=JFP;
case 4
%------------------------la méthode FPCM & ACP-----------------------
end |