Implémenter l'algorithme K-means en Java
Bonjour,
Dans le but d'une classification, j'ai un fichier "base.txt" en entrée qui représente une base de données ou chaque ligne du fichier qui est sous cette forme (7.7,3.8,6.7,2.2,Iris-virginica) est une donnée à classer.
J'ai l'intention d'appliquer l'algorithme K-means en Java et j'ai donc récupéré un code en Java.
Code:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
| // Kmeans.java
package com.orhandemirel.clustering;
import java.util.Random;
import java.util.ArrayList;
public class Kmeans{
private double[][] data; // data to cluster
private int numClusters; // number of clusters
private double[][] clusterCenters; // cluster centers
private int dataSize; // size of the data
private int dataDim; // dimention of the data
private ArrayList[] clusters; // calculated clusters
private double[] clusterVars; // cluster variances
private double epsilon;
public Kmeans(double[][] data, int numClusters, double[][] clusterCenters)
{
dataSize = data.length;
dataDim = data[0].length;
this.data = data;
this.numClusters = numClusters;
this.clusterCenters = clusterCenters;
clusters = new ArrayList[numClusters];
for(int i=0;i<numClusters;i++)
{
clusters[i] = new ArrayList();
}
clusterVars = new double[numClusters];
epsilon = 0.01;
}
public Kmeans(double[][] data, int numClusters)
{
this(data, numClusters, true);
}
public Kmeans(double[][] data, int numClusters, boolean randomizeCenters)
{
dataSize = data.length;
dataDim = data[0].length;
this.data = data;
this.numClusters = numClusters;
this.clusterCenters = new double[numClusters][dataDim];
clusters = new ArrayList[numClusters];
for(int i=0;i<numClusters;i++)
{
clusters[i] = new ArrayList();
}
clusterVars = new double[numClusters];
epsilon = 0.01;
if(randomizeCenters)
{
randomizeCenters(numClusters, data);
}
}
private void randomizeCenters(int numClusters, double[][] data) {
Random r = new Random();
int[] check = new int[numClusters];
for (int i = 0; i < numClusters; i++) {
int rand = r.nextInt(dataSize);
if (check[i] == 0) {
this.clusterCenters[i] = data[rand].clone();
check[i] = 1;
} else {
i--;
}
}
}
private void calculateClusterCenters()
{
for(int i=0;i<numClusters;i++)
{
int clustSize = clusters[i].size();
for(int k= 0; k < dataDim; k++)
{
double sum = 0d;
for(int j =0; j < clustSize; j ++)
{
double[] elem = (double[]) clusters[i].get(j);
sum += elem[k];
}
clusterCenters[i][k] = sum / clustSize;
}
}
}
private void calculateClusterVars()
{
for(int i=0;i<numClusters;i++)
{
int clustSize = clusters[i].size();
Double sum = 0d;
for(int j =0; j < clustSize; j ++)
{
double[] elem = (double[])clusters[i].get(j);
for(int k= 0; k < dataDim; k++)
{
sum += Math.pow( (Double)elem[k] - getClusterCenters()[i][k], 2);
}
}
clusterVars[i] = sum / clustSize;
}
}
public double getTotalVar()
{
double total = 0d;
for(int i=0;i< numClusters;i++)
{
total += clusterVars[i];
}
return total;
}
public double[] getClusterVars()
{
return clusterVars;
}
public ArrayList[] getClusters()
{
return clusters;
}
private void assignData()
{
for(int k=0;k<numClusters;k++)
{
clusters[k].clear();
}
for(int i=0; i<dataSize; i++)
{
int clust = 0;
double dist = Double.MAX_VALUE;
double newdist = 0;
for(int j=0; j<numClusters; j++)
{
newdist = distToCenter( data[i], j );
if( newdist <= dist )
{
clust = j;
dist = newdist;
}
}
clusters[clust].add(data[i]);
}
}
private double distToCenter( double[] datum, int j )
{
double sum = 0d;
for(int i=0;i < dataDim; i++)
{
sum += Math.pow(( datum[i] - getClusterCenters()[j][i] ), 2);
}
return Math.sqrt(sum);
}
public void calculateClusters()
{
double var1 = Double.MAX_VALUE;
double var2;
double delta;
do
{
calculateClusterCenters();
assignData();
calculateClusterVars();
var2 = getTotalVar();
if (Double.isNaN(var2)) // if this happens, there must be some empty clusters
{
delta = Double.MAX_VALUE;
randomizeCenters(numClusters, data);
assignData();
calculateClusterCenters();
calculateClusterVars();
}
else
{
delta = Math.abs(var1 - var2);
var1 = var2;
}
}while(delta > epsilon);
}
public void setEpsilon(double epsilon)
{
if(epsilon > 0)
{
this.epsilon = epsilon;
}
}
/**
* @return the clusterCenters
*/
public double[][] getClusterCenters() {
return clusterCenters;
}
} |
Ma question est de savoir comment, à partir d'un fichier texte, je pourrais appliquer cet algorithme ?
Merci d'avance pour votre aide.
Représentation de l'algorithme Kmeans dans un repère 2D
Bonsoir,
Afin de représenter chaque donnée de la base de données Iris dans un repère (X,Y) pour visualiser le principe de l'algo kmeans :
Comment on attribue à chaque donnée une coordonnée (x,y) sachant que chaque donnée est composée par 4 attributs(longueur pétal, largeur pétal, longueur sépal, largeur sépal) tout on choisit pour chaque type de fleur une couleur!! est ce que ca est possible en java (eclipse) si oui, comment ! et ou je vais trouver des documents pour m'aider à implémenter l'astuce.
Merci énormément pour votre aide