IdentifiantMot de passe
Loading...
Mot de passe oublié ?Je m'inscris ! (gratuit)
Navigation

Inscrivez-vous gratuitement
pour pouvoir participer, suivre les réponses en temps réel, voter pour les messages, poser vos propres questions et recevoir la newsletter

Intelligence artificielle Discussion :

Un robot piloté par une IA installe près de 10 000 panneaux solaires en Australie


Sujet :

Intelligence artificielle

  1. #1
    Chroniqueur Actualités
    Avatar de Patrick Ruiz
    Homme Profil pro
    Redacteur web
    Inscrit en
    Février 2017
    Messages
    2 188
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : Cameroun

    Informations professionnelles :
    Activité : Redacteur web
    Secteur : Communication - Médias

    Informations forums :
    Inscription : Février 2017
    Messages : 2 188
    Par défaut Un robot piloté par une IA installe près de 10 000 panneaux solaires en Australie
    Un robot piloté par une IA installe près de 10 000 panneaux solaires en Australie
    L’initiative ravive les questionnements sur les tentatives de remplacement des humains par les robots

    L'entreprise technologique chinoise Leapting a réalisé avec succès sa première installation commerciale de modules photovoltaïques à l'aide d'un robot piloté par l'intelligence artificielle en Australie. Le système autonome a installé près de 10 000 panneaux solaires, marquant ainsi une étape importante dans l'automatisation du développement de l'infrastructure solaire. Le tableau ravive les questionnements sur les tentatives de remplacement des humains par les robots.

    Le robot de l'entreprise Leapting, déployé commercialement pour la première fois à Culcairn, est un véhicule à chenilles doté d'un bras robotique à six axes équipé d'une pince guidée par l'intelligence artificielle. Il utilise des capteurs 3D, des algorithmes de reconnaissance de la posture et un système embarqué de localisation et de cartographie simultanées pour se positionner avec une précision de l'ordre du millimètre. Une fois chargé d'une pile de panneaux, il se déplace de manière autonome dans le réseau, identifie les points de montage, aligne chaque module et le place. Selon les données recueillies sur le terrain dans le cadre du projet, le robot installait des panneaux à un rythme d'environ 60 par heure, soit à peu près 480 dans une journée normale de huit heures. C'est environ trois à cinq fois plus rapide qu'une équipe humaine typique de quatre personnes, qui plafonne souvent à environ 100 à 120 modules par jour en raison de la fatigue, des limites de chaleur et du besoin de coordination de l'équipe.

    Une fois mis en scène et calibré, il gère seul la navigation, l'évitement des obstacles et la précision du placement. Le robot a néanmoins besoin d'un terrain relativement bien nivelé et d'un espacement adapté à son châssis de 2,8 mètres de large. Les sites présentant des pentes abruptes, de la boue épaisse ou des roches denses le ralentiront ou le bloqueront. Bien que son intelligence artificielle puisse s'adapter aux changements de lumière, un éblouissement intense ou une mauvaise visibilité peuvent dégrader les performances des capteurs. Il peut également être nécessaire qu'un humain le suive pour la fixation mécanique finale, en fonction du système de rayonnage utilisé. En ce sens, le robot de Leapting dépend encore de la normalisation de la conception des centrales solaires - plus le site est plat et plus le rayonnage est simple, plus il est performant.


    Ce type de mise en œuvre desdits robots consiste en général en de la détection et suivi d’objets. Dans ce cas, il y a collecte des images provenant de deux caméras avant et effectue une détection d’objet sur une classe spécifiée. Cette détection utilise Tensorflow via le tensorflow_object_detector. Il accepte n'importe quel modèle Tensorflow et permet au développeur de spécifier un sous-ensemble de classes de détection incluses dans le modèle. Il effectue cet ensemble d'opérations pour un nombre prédéfini d'itérations, en bloquant pendant une durée prédéfinie entre chaque itération. L'application détermine ensuite l'emplacement de la détection la plus fiable de la classe spécifiée et se dirige vers l'objet.

    L’application est organisée en trois ensembles de processus Python communiquant avec le robot Spot. Le diagramme des processus est illustré ci-dessous. Le processus principal communique avec le robot Spot via GRPC et reçoit constamment des images. Ces images sont poussées dans la RAW_IMAGES_QUEUE et lues par les processus Tensorflow. Ces processus détectent des objets dans les images et poussent l'emplacement dans PROCESSED_BOXES_QUEUE. Le thread principal détermine alors l'emplacement de l'objet et envoie des commandes au robot pour qu'il se dirige vers l'objet.

    Code Python : Sélectionner tout - Visualiser dans une fenêtre à part
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    231
    232
    233
    234
    235
    236
    237
    238
    239
    240
    241
    242
    243
    244
    245
    246
    247
    248
    249
    250
    251
    252
    253
    254
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
    265
    266
    267
    268
    269
    270
    271
    272
    273
    274
    275
    276
    277
    278
    279
    280
    281
    282
    283
    284
    285
    286
    287
    288
    289
    290
    291
    292
    293
    294
    295
    296
    297
    298
    299
    300
    301
    302
    303
    304
    305
    306
    307
    308
    309
    310
    311
    312
    313
    314
    315
    316
    317
    318
    319
    320
    321
    322
    323
    324
    325
    326
    327
    328
    329
    330
    331
    332
    333
    334
    335
    336
    337
    338
    339
    340
    341
    342
    343
    344
    345
    346
    347
    348
    349
    350
    351
    352
    353
    354
    355
    356
    357
    358
    359
    360
    361
    362
    363
    364
    365
    366
    367
    368
    369
    370
    371
    372
    373
    374
    375
    376
    377
    378
    379
    380
    381
    382
    383
    384
    385
    386
    387
    388
    389
    390
    391
    392
    393
    394
    395
    396
    397
    398
    399
    400
    401
    402
    403
    404
    405
    406
    407
    408
    409
    410
    411
    412
    413
    414
    415
    416
    417
    418
    419
    420
    421
    422
    423
    424
    425
    426
    427
    428
    429
    430
    431
    432
    433
    434
    435
    436
    437
    438
    439
    440
    441
    442
    443
    444
    445
    446
    447
    448
    449
    450
    451
    452
    453
    454
    455
    456
    457
    458
    459
    460
    461
    462
    463
    464
    465
    466
    467
    468
    469
    470
    471
    472
    473
    474
    475
    476
    477
    478
    479
    480
    481
    482
    483
    484
    485
    486
    487
    488
    489
    490
    491
    492
    493
    494
    495
    496
    497
    498
    499
    500
    501
    502
    503
    504
    505
    506
    507
    508
    509
    510
    511
    512
    513
    514
    515
    516
    517
    518
    519
    520
    521
    522
    523
    524
    525
    526
    527
    528
    529
    530
    531
    532
    533
    534
    535
    536
    537
    538
    539
    540
    541
    542
    543
    544
    545
    546
    547
    548
    549
    550
    551
    552
    553
    554
    555
    556
    557
    558
    559
    560
    561
    562
    563
    564
    565
    566
    567
    568
    569
    570
    571
    572
    573
    574
    575
    576
    577
    578
    579
    580
    581
    582
    583
    584
    585
    586
    587
    588
    589
    590
    591
    592
    593
    594
    595
    596
    597
    598
    599
    600
    601
    602
    603
    604
    605
    606
    607
    608
    609
    610
    611
    612
    613
    614
    615
    616
    617
    618
    619
    620
    621
    622
    623
    624
    625
    626
    627
    628
    629
    630
    631
    632
    633
    634
    635
    636
    637
    638
    639
    640
    641
    642
    643
    644
    645
    646
    647
    648
    649
    650
    651
    652
    653
    654
    655
    656
    657
    658
    659
    660
    661
    662
    663
    664
    665
    666
    667
    668
    669
    670
    671
    672
    673
    674
    675
    676
    677
    678
    679
    680
    681
    682
    683
    684
    685
    686
    687
    688
    689
    690
    691
    692
    693
    694
    695
    696
    697
    698
    699
    700
    701
    702
    703
    704
    705
    706
    707
    708
    709
    710
    711
    712
    713
    714
    715
    716
    717
    718
    719
    720
    721
    722
    723
    724
    725
    726
    727
    728
    729
    730
    731
    732
    733
    734
    735
    736
    737
    738
    739
    740
    741
    742
    743
    744
    745
    746
    747
    748
    749
    750
    751
    752
    753
    754
    755
    756
    757
    758
    759
    760
    761
    762
    763
    764
    765
    766
    767
    768
    769
    770
    771
    772
    773
    774
    775
    776
    777
    778
    779
    780
    781
    782
    783
    784
    785
    786
    787
    788
    789
    790
    791
    792
    793
    794
    795
    796
    797
    798
    799
    800
    801
    802
    803
    804
    805
    806
    807
    808
    809
    810
    811
    812
    813
    814
    815
    816
    817
    818
    819
    820
    821
    822
    823
    824
    825
    826
    827
    828
    829
    830
    831
    832
    833
    834
    835
    836
    837
    838
    839
    # Copyright (c) 2023 Boston Dynamics, Inc.  All rights reserved. 
    # 
    # Downloading, reproducing, distributing or otherwise using the SDK Software 
    # is subject to the terms and conditions of the Boston Dynamics Software 
    # Development Kit License (20191101-BDSDK-SL). 
     
    """Tutorial to show how to use the Boston Dynamics API to detect and follow an object""" 
    import argparse 
    import io 
    import json 
    import math 
    import os 
    import signal 
    import sys 
    import time 
    from multiprocessing import Barrier, Process, Queue, Value 
    from queue import Empty, Full 
    from threading import BrokenBarrierError, Thread 
     
    import cv2 
    import numpy as np 
    from PIL import Image 
    from scipy import ndimage 
    from tensorflow_object_detection import DetectorAPI 
     
    import bosdyn.client 
    import bosdyn.client.util 
    from bosdyn import geometry 
    from bosdyn.api import geometry_pb2 as geo 
    from bosdyn.api import image_pb2, trajectory_pb2 
    from bosdyn.api.image_pb2 import ImageSource 
    from bosdyn.api.spot import robot_command_pb2 as spot_command_pb2 
    from bosdyn.client.async_tasks import AsyncPeriodicQuery, AsyncTasks 
    from bosdyn.client.frame_helpers import (GROUND_PLANE_FRAME_NAME, VISION_FRAME_NAME, get_a_tform_b, 
                                             get_vision_tform_body) 
    from bosdyn.client.image import ImageClient 
    from bosdyn.client.lease import LeaseClient, LeaseKeepAlive 
    from bosdyn.client.math_helpers import Quat, SE3Pose 
    from bosdyn.client.robot_command import (CommandFailedError, CommandTimedOutError, 
                                             RobotCommandBuilder, RobotCommandClient, blocking_stand) 
    from bosdyn.client.robot_state import RobotStateClient 
     
    LOGGER = bosdyn.client.util.get_logger() 
     
    SHUTDOWN_FLAG = Value('i', 0) 
     
    # Don't let the queues get too backed up 
    QUEUE_MAXSIZE = 10 
     
    # This is a multiprocessing.Queue for communication between the main process and the 
    # Tensorflow processes. 
    # Entries in this queue are in the format: 
     
    # { 
    #     'source': Name of the camera, 
    #     'world_tform_cam': transform from VO to camera, 
    #     'world_tform_gpe':  transform from VO to ground plane, 
    #     'raw_image_time': Time when the image was collected, 
    #     'cv_image': The decoded image, 
    #     'visual_dims': (cols, rows), 
    #     'depth_image': depth image proto, 
    #     'system_cap_time': Time when the image was received by the main process, 
    #     'image_queued_time': Time when the image was done preprocessing and queued 
    # } 
    RAW_IMAGES_QUEUE = Queue(QUEUE_MAXSIZE) 
     
    # This is a multiprocessing.Queue for communication between the Tensorflow processes and 
    # the bbox print process. This is meant for running in a containerized environment with no access 
    # to an X display 
    # Entries in this queue have the following fields in addition to those in : 
    # { 
    #   'processed_image_start_time':  Time when the image was received by the TF process, 
    #   'processed_image_end_time':  Time when the image was processing for bounding boxes 
    #   'boxes': list of detected bounding boxes for the processed image 
    #   'classes': classes of objects, 
    #   'scores': confidence scores, 
    # } 
    PROCESSED_BOXES_QUEUE = Queue(QUEUE_MAXSIZE) 
     
    # Barrier for waiting on Tensorflow processes to start, initialized in main() 
    TENSORFLOW_PROCESS_BARRIER = None 
     
    COCO_CLASS_DICT = { 
        1: 'person', 
        2: 'bicycle', 
        3: 'car', 
        4: 'motorcycle', 
        5: 'airplane', 
        6: 'bus', 
        7: 'train', 
        8: 'truck', 
        9: 'boat', 
        10: 'trafficlight', 
        11: 'firehydrant', 
        13: 'stopsign', 
        14: 'parkingmeter', 
        15: 'bench', 
        16: 'bird', 
        17: 'cat', 
        18: 'dog', 
        19: 'horse', 
        20: 'sheep', 
        21: 'cow', 
        22: 'elephant', 
        23: 'bear', 
        24: 'zebra', 
        25: 'giraffe', 
        27: 'backpack', 
        28: 'umbrella', 
        31: 'handbag', 
        32: 'tie', 
        33: 'suitcase', 
        34: 'frisbee', 
        35: 'skis', 
        36: 'snowboard', 
        37: 'sportsball', 
        38: 'kite', 
        39: 'baseballbat', 
        40: 'baseballglove', 
        41: 'skateboard', 
        42: 'surfboard', 
        43: 'tennisracket', 
        44: 'bottle', 
        46: 'wineglass', 
        47: 'cup', 
        48: 'fork', 
        49: 'knife', 
        50: 'spoon', 
        51: 'bowl', 
        52: 'banana', 
        53: 'apple', 
        54: 'sandwich', 
        55: 'orange', 
        56: 'broccoli', 
        57: 'carrot', 
        58: 'hotdog', 
        59: 'pizza', 
        60: 'donut', 
        61: 'cake', 
        62: 'chair', 
        63: 'couch', 
        64: 'pottedplant', 
        65: 'bed', 
        67: 'diningtable', 
        70: 'toilet', 
        72: 'tv', 
        73: 'laptop', 
        74: 'mouse', 
        75: 'remote', 
        76: 'keyboard', 
        77: 'cellphone', 
        78: 'microwave', 
        79: 'oven', 
        80: 'toaster', 
        81: 'sink', 
        82: 'refrigerator', 
        84: 'book', 
        85: 'clock', 
        86: 'vase', 
        87: 'scissors', 
        88: 'teddybear', 
        89: 'hairdrier', 
        90: 'toothbrush' 
    } 
     
    # Mapping from visual to depth data 
    VISUAL_SOURCE_TO_DEPTH_MAP_SOURCE = { 
        'frontleft_fisheye_image': 'frontleft_depth_in_visual_frame', 
        'frontright_fisheye_image': 'frontright_depth_in_visual_frame' 
    } 
    ROTATION_ANGLES = { 
        'back_fisheye_image': 0, 
        'frontleft_fisheye_image': -78, 
        'frontright_fisheye_image': -102, 
        'left_fisheye_image': 0, 
        'right_fisheye_image': 180 
    } 
     
     
    def _update_thread(async_task): 
        while True: 
            async_task.update() 
            time.sleep(0.01) 
     
     
    class AsyncImage(AsyncPeriodicQuery): 
        """Grab image.""" 
     
        def __init__(self, image_client, image_sources): 
            # Period is set to be about 15 FPS 
            super(AsyncImage, self).__init__('images', image_client, LOGGER, period_sec=0.067) 
            self.image_sources = image_sources 
     
        def _start_query(self): 
            return self._client.get_image_from_sources_async(self.image_sources) 
     
     
    class AsyncRobotState(AsyncPeriodicQuery): 
        """Grab robot state.""" 
     
        def __init__(self, robot_state_client): 
            # period is set to be about the same rate as detections on the CORE AI 
            super(AsyncRobotState, self).__init__('robot_state', robot_state_client, LOGGER, 
                                                  period_sec=0.02) 
     
        def _start_query(self): 
            return self._client.get_robot_state_async() 
     
     
    def get_source_list(image_client): 
        """Gets a list of image sources and filters based on config dictionary 
      
        Args: 
            image_client: Instantiated image client 
        """ 
     
        # We are using only the visual images with their corresponding depth sensors 
        sources = image_client.list_image_sources() 
        source_list = [] 
        for source in sources: 
            if source.image_type == ImageSource.IMAGE_TYPE_VISUAL: 
                # only append if sensor has corresponding depth sensor 
                if source.name in VISUAL_SOURCE_TO_DEPTH_MAP_SOURCE: 
                    source_list.append(source.name) 
                    source_list.append(VISUAL_SOURCE_TO_DEPTH_MAP_SOURCE[source.name]) 
        return source_list 
     
     
    def capture_images(image_task, sleep_between_capture): 
        """ Captures images and places them on the queue 
      
        Args: 
            image_task (AsyncImage): Async task that provides the images response to use 
            sleep_between_capture (float): Time to sleep between each image capture 
        """ 
        while not SHUTDOWN_FLAG.value: 
            get_im_resp = image_task.proto 
            start_time = time.time() 
            if not get_im_resp: 
                continue 
            depth_responses = { 
                img.source.name: img 
                for img in get_im_resp 
                if img.source.image_type == ImageSource.IMAGE_TYPE_DEPTH 
            } 
            entry = {} 
            for im_resp in get_im_resp: 
                if im_resp.source.image_type == ImageSource.IMAGE_TYPE_VISUAL: 
                    source = im_resp.source.name 
                    depth_source = VISUAL_SOURCE_TO_DEPTH_MAP_SOURCE[source] 
                    depth_image = depth_responses[depth_source] 
     
                    acquisition_time = im_resp.shot.acquisition_time 
                    image_time = acquisition_time.seconds + acquisition_time.nanos * 1e-9 
     
                    try: 
                        image = Image.open(io.BytesIO(im_resp.shot.image.data)) 
                        source = im_resp.source.name 
     
                        image = ndimage.rotate(image, ROTATION_ANGLES[source]) 
                        if im_resp.shot.image.pixel_format == image_pb2.Image.PIXEL_FORMAT_GREYSCALE_U8: 
                            image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)  # Converted to RGB for TF 
                        tform_snapshot = im_resp.shot.transforms_snapshot 
                        frame_name = im_resp.shot.frame_name_image_sensor 
                        world_tform_cam = get_a_tform_b(tform_snapshot, VISION_FRAME_NAME, frame_name) 
                        world_tform_gpe = get_a_tform_b(tform_snapshot, VISION_FRAME_NAME, 
                                                        GROUND_PLANE_FRAME_NAME) 
                        entry[source] = { 
                            'source': source, 
                            'world_tform_cam': world_tform_cam, 
                            'world_tform_gpe': world_tform_gpe, 
                            'raw_image_time': image_time, 
                            'cv_image': image, 
                            'visual_dims': (im_resp.shot.image.cols, im_resp.shot.image.rows), 
                            'depth_image': depth_image, 
                            'system_cap_time': start_time, 
                            'image_queued_time': time.time() 
                        } 
                    except Exception as exc:  # pylint: disable=broad-except 
                        print(f'Exception occurred during image capture {exc}') 
            try: 
                RAW_IMAGES_QUEUE.put_nowait(entry) 
            except Full as exc: 
                print(f'RAW_IMAGES_QUEUE is full: {exc}') 
            time.sleep(sleep_between_capture) 
     
     
    def start_tensorflow_processes(num_processes, model_path, detection_class, detection_threshold, 
                                   max_processing_delay): 
        """Starts Tensorflow processes in parallel. 
      
        It does not keep track of the processes once they are started because they run indefinitely 
        and are never joined back to the main process. 
      
        Args: 
            num_processes (int): Number of Tensorflow processes to start in parallel. 
            model_path (str): Filepath to the Tensorflow model to use. 
            detection_class (int): Detection class to detect 
            detection_threshold (float): Detection threshold to apply to all Tensorflow detections. 
            max_processing_delay (float): Allowed delay before processing an incoming image. 
        """ 
        processes = [] 
        for _ in range(num_processes): 
            process = Process( 
                target=process_images, args=( 
                    model_path, 
                    detection_class, 
                    detection_threshold, 
                    max_processing_delay, 
                ), daemon=True) 
            process.start() 
            processes.append(process) 
        return processes 
     
     
    def process_images(model_path, detection_class, detection_threshold, max_processing_delay): 
        """Starts Tensorflow and detects objects in the incoming images. 
      
        Args: 
            model_path (str): Filepath to the Tensorflow model to use. 
            detection_class (int): Detection class to detect 
            detection_threshold (float): Detection threshold to apply to all Tensorflow detections. 
            max_processing_delay (float): Allowed delay before processing an incoming image. 
        """ 
     
        odapi = DetectorAPI(path_to_ckpt=model_path) 
        num_processed_skips = 0 
     
        if TENSORFLOW_PROCESS_BARRIER is None: 
            return 
     
        try: 
            TENSORFLOW_PROCESS_BARRIER.wait() 
        except BrokenBarrierError as exc: 
            print(f'Error waiting for Tensorflow processes to initialize: {exc}') 
            return False 
     
        while not SHUTDOWN_FLAG.value: 
            try: 
                entry = RAW_IMAGES_QUEUE.get_nowait() 
            except Empty: 
                time.sleep(0.1) 
                continue 
            for _, capture in entry.items(): 
                start_time = time.time() 
                processing_delay = time.time() - capture['raw_image_time'] 
                if processing_delay > max_processing_delay: 
                    num_processed_skips += 1 
                    print(f'skipped image because it took {processing_delay}') 
                    continue  # Skip image due to delay 
     
                image = capture['cv_image'] 
                boxes, scores, classes, _ = odapi.process_frame(image) 
                confident_boxes = [] 
                confident_object_classes = [] 
                confident_scores = [] 
                if len(boxes) == 0: 
                    print('no detections founds') 
                    continue 
                for box, score, box_class in sorted(zip(boxes, scores, classes), key=lambda x: x[1], 
                                                    reverse=True): 
                    if score > detection_threshold and box_class == detection_class: 
                        confident_boxes.append(box) 
                        confident_object_classes.append(COCO_CLASS_DICT[box_class]) 
                        confident_scores.append(score) 
                        image = cv2.rectangle(image, (box[1], box[0]), (box[3], box[2]), (255, 0, 0), 2) 
     
                capture['processed_image_start_time'] = start_time 
                capture['processed_image_end_time'] = time.time() 
                capture['boxes'] = confident_boxes 
                capture['classes'] = confident_object_classes 
                capture['scores'] = confident_scores 
                capture['cv_image'] = image 
            try: 
                PROCESSED_BOXES_QUEUE.put_nowait(entry) 
            except Full as exc: 
                print(f'PROCESSED_BOXES_QUEUE is full: {exc}') 
        print('tf process ending') 
        return True 
     
     
    def get_go_to(world_tform_object, robot_state, mobility_params, dist_margin=0.5): 
        """Gets trajectory command to a goal location 
      
        Args: 
            world_tform_object (SE3Pose): Transform from vision frame to target object 
            robot_state (RobotState): Current robot state 
            mobility_params (MobilityParams): Mobility parameters 
            dist_margin (float): Distance margin to target 
        """ 
        vo_tform_robot = get_vision_tform_body(robot_state.kinematic_state.transforms_snapshot) 
        print(f'robot pos: {vo_tform_robot}') 
        delta_ewrt_vo = np.array( 
            [world_tform_object.x - vo_tform_robot.x, world_tform_object.y - vo_tform_robot.y, 0]) 
        norm = np.linalg.norm(delta_ewrt_vo) 
        if norm == 0: 
            return None 
        delta_ewrt_vo_norm = delta_ewrt_vo / norm 
        heading = _get_heading(delta_ewrt_vo_norm) 
        vo_tform_goal = np.array([ 
            world_tform_object.x - delta_ewrt_vo_norm[0] * dist_margin, 
            world_tform_object.y - delta_ewrt_vo_norm[1] * dist_margin 
        ]) 
        se2_pose = geo.SE2Pose(position=geo.Vec2(x=vo_tform_goal[0], y=vo_tform_goal[1]), angle=heading) 
        tag_cmd = RobotCommandBuilder.synchro_se2_trajectory_command(se2_pose, 
                                                                     frame_name=VISION_FRAME_NAME, 
                                                                     params=mobility_params) 
        return tag_cmd 
     
     
    def _get_heading(xhat): 
        zhat = [0.0, 0.0, 1.0] 
        yhat = np.cross(zhat, xhat) 
        mat = np.array([xhat, yhat, zhat]).transpose() 
        return Quat.from_matrix(mat).to_yaw() 
     
     
    def set_default_body_control(): 
        """Set default body control params to current body position""" 
        footprint_R_body = geometry.EulerZXY() 
        position = geo.Vec3(x=0.0, y=0.0, z=0.0) 
        rotation = footprint_R_body.to_quaternion() 
        pose = geo.SE3Pose(position=position, rotation=rotation) 
        point = trajectory_pb2.SE3TrajectoryPoint(pose=pose) 
        traj = trajectory_pb2.SE3Trajectory(points=[point]) 
        return spot_command_pb2.BodyControlParams(base_offset_rt_footprint=traj) 
     
     
    def get_mobility_params(): 
        """Gets mobility parameters for following""" 
        vel_desired = .75 
        speed_limit = geo.SE2VelocityLimit( 
            max_vel=geo.SE2Velocity(linear=geo.Vec2(x=vel_desired, y=vel_desired), angular=.25)) 
        body_control = set_default_body_control() 
        mobility_params = spot_command_pb2.MobilityParams(vel_limit=speed_limit, obstacle_params=None, 
                                                          body_control=body_control, 
                                                          locomotion_hint=spot_command_pb2.HINT_TROT) 
        return mobility_params 
     
     
    def depth_to_xyz(depth, pixel_x, pixel_y, focal_length, principal_point): 
        """Calculate the transform to point in image using camera intrinsics and depth""" 
        x = depth * (pixel_x - principal_point.x) / focal_length.x 
        y = depth * (pixel_y - principal_point.y) / focal_length.y 
        z = depth 
        return x, y, z 
     
     
    def remove_ground_from_depth_image(raw_depth_image, focal_length, principal_point, world_tform_cam, 
                                       world_tform_gpe, ground_tolerance=0.04): 
        """ Simple ground plane removal algorithm. Uses ground height 
            and does simple z distance filtering. 
      
        Args: 
            raw_depth_image (np.array): Depth image 
            focal_length (Vec2): Focal length of camera that produced the depth image 
            principal_point (Vec2): Principal point of camera that produced the depth image 
            world_tform_cam (SE3Pose): Transform from VO to camera frame 
            world_tform_gpe (SE3Pose): Transform from VO to GPE frame 
            ground_tolerance (float): Distance in meters to add to the ground plane 
        """ 
        new_depth_image = raw_depth_image 
     
        # same functions as depth_to_xyz, but converted to np functions 
        indices = np.indices(raw_depth_image.shape) 
        xs = raw_depth_image * (indices[1] - principal_point.x) / focal_length.x 
        ys = raw_depth_image * (indices[0] - principal_point.y) / focal_length.y 
        zs = raw_depth_image 
     
        # create xyz point cloud 
        camera_tform_points = np.stack([xs, ys, zs], axis=2) 
        # points in VO frame 
        world_tform_points = world_tform_cam.transform_cloud(camera_tform_points) 
        # array of booleans where True means the point was below the ground plane plus tolerance 
        world_tform_points_mask = (world_tform_gpe.z - world_tform_points[:, :, 2]) < ground_tolerance 
        # remove data below ground plane 
        new_depth_image[world_tform_points_mask] = 0 
        return new_depth_image 
     
     
    def get_distance_to_closest_object_depth(x_min, x_max, y_min, y_max, depth_scale, raw_depth_image, 
                                             histogram_bin_size=0.50, minimum_number_of_points=10, 
                                             max_distance=8.0): 
        """Make a histogram of distances to points in the cloud and take the closest distance with 
        enough points. 
      
        Args: 
            x_min (int): minimum x coordinate (column) of object to find 
            x_max (int): maximum x coordinate (column) of object to find 
            y_min (int): minimum y coordinate (row) of object to find 
            y_max (int): maximum y coordinate (row) of object to find 
            depth_scale (float): depth scale of the image to convert from sensor value to meters 
            raw_depth_image (np.array): matrix of depth pixels 
            histogram_bin_size (float): size of each bin of distances 
            minimum_number_of_points (int): minimum number of points before returning depth 
            max_distance (float): maximum distance to object in meters 
        """ 
        num_bins = math.ceil(max_distance / histogram_bin_size) 
     
        # get a sub-rectangle of the bounding box out of the whole image, then flatten 
        obj_depths = (raw_depth_image[y_min:y_max, x_min:x_max]).flatten() 
        obj_depths = obj_depths / depth_scale 
        obj_depths = obj_depths[obj_depths != 0] 
     
        hist, hist_edges = np.histogram(obj_depths, bins=num_bins, range=(0, max_distance)) 
     
        edges_zipped = zip(hist_edges[:-1], hist_edges[1:]) 
        # Iterate over the histogram and return the first distance with enough points. 
        for entry, edges in zip(hist, edges_zipped): 
            if entry > minimum_number_of_points: 
                filtered_depths = obj_depths[(obj_depths > edges[0]) & (obj_depths < edges[1])] 
                if len(filtered_depths) == 0: 
                    continue 
                return np.mean(filtered_depths) 
     
        return max_distance 
     
     
    def rotate_about_origin_degrees(origin, point, angle): 
        """ 
        Rotate a point counterclockwise by a given angle around a given origin. 
      
        Args: 
            origin (tuple): Origin to rotate the point around 
            point (tuple): Point to rotate 
            angle (float): Angle in degrees 
        """ 
        return rotate_about_origin(origin, point, math.radians(angle)) 
     
     
    def rotate_about_origin(origin, point, angle): 
        """ 
        Rotate a point counterclockwise by a given angle around a given origin. 
      
        Args: 
            origin (tuple): Origin to rotate the point around 
            point (tuple): Point to rotate 
            angle (float): Angle in radians 
        """ 
        orig_x, orig_y = origin 
        pnt_x, pnt_y = point 
     
        ret_x = orig_x + math.cos(angle) * (pnt_x - orig_x) - math.sin(angle) * (pnt_y - orig_y) 
        ret_y = orig_y + math.sin(angle) * (pnt_x - orig_x) + math.cos(angle) * (pnt_y - orig_y) 
        return int(ret_x), int(ret_y) 
     
     
    def get_object_position(world_tform_cam, world_tform_gpe, visual_dims, depth_image, bounding_box, 
                            rotation_angle): 
        """ 
        Extract the bounding box, then find the mode in that region. 
      
        Args: 
            world_tform_cam (SE3Pose): SE3 transform from world to camera frame 
            visual_dims (Tuple): (cols, rows) tuple from the visual image 
            depth_image (ImageResponse): From a depth camera corresponding to the visual_image 
            bounding_box (list): Bounding box from tensorflow 
            rotation_angle (float): Angle (in degrees) to rotate depth image to match cam image rotation 
        """ 
     
        # Make sure there are two images. 
        if visual_dims is None or depth_image is None: 
            # Fail. 
            return 
     
        # Rotate bounding box back to original frame 
        points = [(bounding_box[1], bounding_box[0]), (bounding_box[3], bounding_box[0]), 
                  (bounding_box[3], bounding_box[2]), (bounding_box[1], bounding_box[2])] 
     
        origin = (visual_dims[0] / 2, visual_dims[1] / 2) 
     
        points_rot = [rotate_about_origin_degrees(origin, point, rotation_angle) for point in points] 
     
        # Get the bounding box corners. 
        y_min = max(0, min([point[1] for point in points_rot])) 
        x_min = max(0, min([point[0] for point in points_rot])) 
        y_max = min(visual_dims[1], max([point[1] for point in points_rot])) 
        x_max = min(visual_dims[0], max([point[0] for point in points_rot])) 
     
        # Check that the bounding box is valid. 
        if (x_min < 0 or y_min < 0 or x_max > visual_dims[0] or y_max > visual_dims[1]): 
            print(f'Bounding box is invalid: ({x_min}, {y_min}) | ({x_max}, {y_max})') 
            print(f'Bounds: ({visual_dims[0]}, {visual_dims[1]})') 
            return 
     
        # Unpack the images. 
        try: 
            if depth_image.shot.image.pixel_format == image_pb2.Image.PIXEL_FORMAT_DEPTH_U16: 
                dtype = np.uint16 
            else: 
                dtype = np.uint8 
            img = np.fromstring(depth_image.shot.image.data, dtype=dtype) 
            if depth_image.shot.image.format == image_pb2.Image.FORMAT_RAW: 
                img = img.reshape(depth_image.shot.image.rows, depth_image.shot.image.cols) 
            else: 
                img = cv2.imdecode(img, -1) 
            depth_image_pixels = img 
            depth_image_pixels = remove_ground_from_depth_image( 
                depth_image_pixels, depth_image.source.pinhole.intrinsics.focal_length, 
                depth_image.source.pinhole.intrinsics.principal_point, world_tform_cam, world_tform_gpe) 
            # Get the depth data from the region in the bounding box. 
            max_distance = 8.0 
            depth = get_distance_to_closest_object_depth(x_min, x_max, y_min, y_max, 
                                                         depth_image.source.depth_scale, 
                                                         depth_image_pixels, max_distance=max_distance) 
     
            if depth >= max_distance: 
                # Not enough depth data. 
                print('Not enough depth data.') 
                return False 
            else: 
                print(f'distance to object: {depth}') 
     
            center_x = round((x_max - x_min) / 2.0 + x_min) 
            center_y = round((y_max - y_min) / 2.0 + y_min) 
     
            tform_x, tform_y, tform_z = depth_to_xyz( 
                depth, center_x, center_y, depth_image.source.pinhole.intrinsics.focal_length, 
                depth_image.source.pinhole.intrinsics.principal_point) 
            camera_tform_obj = SE3Pose(tform_x, tform_y, tform_z, Quat()) 
     
            return world_tform_cam * camera_tform_obj 
        except Exception as exc:  # pylint: disable=broad-except 
            print(f'Error getting object position: {exc}') 
            return 
     
     
    def _check_model_path(model_path): 
        if model_path is None or \ 
        not os.path.exists(model_path) or \ 
        not os.path.isfile(model_path): 
            print(f'ERROR, could not find model file {model_path}') 
            return False 
        return True 
     
     
    def _check_and_load_json_classes(config_path): 
        if os.path.isfile(config_path): 
            with open(config_path) as json_classes: 
                global COCO_CLASS_DICT  # pylint: disable=global-statement 
                COCO_CLASS_DICT = json.load(json_classes) 
     
     
    def _find_highest_conf_source(processed_boxes_entry): 
        highest_conf_source = None 
        max_score = 0 
        for key, capture in processed_boxes_entry.items(): 
            if 'scores' in capture.keys(): 
                if len(capture['scores']) > 0 and capture['scores'][0] > max_score: 
                    highest_conf_source = key 
                    max_score = capture['scores'][0] 
        return highest_conf_source 
     
     
    def signal_handler(signal, frame): 
        print('Interrupt caught, shutting down') 
        SHUTDOWN_FLAG.value = 1 
     
     
    def main(): 
        """Command line interface.""" 
     
        parser = argparse.ArgumentParser() 
        parser.add_argument( 
            '--model-path', default='/model.pb', help= 
            ('Local file path to the Tensorflow model, example pre-trained models can be found at ' 
             'https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md' 
            )) 
        parser.add_argument('--classes', default='/classes.json', type=str, 
                            help='File containing json mapping of object class IDs to class names') 
        parser.add_argument('--number-tensorflow-processes', default=1, type=int, 
                            help='Number of Tensorflow processes to run in parallel') 
        parser.add_argument('--detection-threshold', default=0.7, type=float, 
                            help='Detection threshold to use for Tensorflow detections') 
        parser.add_argument( 
            '--sleep-between-capture', default=0.2, type=float, 
            help=('Seconds to sleep between each image capture loop iteration, which captures ' 
                  'an image from all cameras')) 
        parser.add_argument( 
            '--detection-class', default=1, type=int, 
            help=('Detection classes to use in the Tensorflow model.' 
                  'Default is to use 1, which is a person in the Coco dataset')) 
        parser.add_argument( 
            '--max-processing-delay', default=7.0, type=float, 
            help=('Maximum allowed delay for processing an image. ' 
                  'Any image older than this value will be skipped')) 
        parser.add_argument('--test-mode', action='store_true', 
                            help='Run application in test mode, don\'t execute commands') 
     
        bosdyn.client.util.add_base_arguments(parser) 
        bosdyn.client.util.add_payload_credentials_arguments(parser) 
        options = parser.parse_args() 
        signal.signal(signal.SIGINT, signal_handler) 
        try: 
            # Make sure the model path is a valid file 
            if not _check_model_path(options.model_path): 
                return False 
     
            # Check for classes json file, otherwise use the COCO class dictionary 
            _check_and_load_json_classes(options.classes) 
     
            global TENSORFLOW_PROCESS_BARRIER  # pylint: disable=global-statement 
            TENSORFLOW_PROCESS_BARRIER = Barrier(options.number_tensorflow_processes + 1) 
            # Start Tensorflow processes 
            tf_processes = start_tensorflow_processes(options.number_tensorflow_processes, 
                                                      options.model_path, options.detection_class, 
                                                      options.detection_threshold, 
                                                      options.max_processing_delay) 
     
            # sleep to give the Tensorflow processes time to initialize 
            try: 
                TENSORFLOW_PROCESS_BARRIER.wait() 
            except BrokenBarrierError as exc: 
                print(f'Error waiting for Tensorflow processes to initialize: {exc}') 
                return False 
            # Start the API related things 
     
            # Create robot object with a world object client 
            sdk = bosdyn.client.create_standard_sdk('SpotFollowClient') 
            robot = sdk.create_robot(options.hostname) 
     
            if options.payload_credentials_file: 
                robot.authenticate_from_payload_credentials( 
                    *bosdyn.client.util.get_guid_and_secret(options)) 
            else: 
                bosdyn.client.util.authenticate(robot) 
     
            # Time sync is necessary so that time-based filter requests can be converted 
            robot.time_sync.wait_for_sync() 
     
            # Verify the robot is not estopped and that an external application has registered and holds 
            # an estop endpoint. 
            assert not robot.is_estopped(), 'Robot is estopped. Please use an external E-Stop client,' \ 
                                            ' such as the estop SDK example, to configure E-Stop.' 
     
            # Create the sdk clients 
            robot_state_client = robot.ensure_client(RobotStateClient.default_service_name) 
            robot_command_client = robot.ensure_client(RobotCommandClient.default_service_name) 
            lease_client = robot.ensure_client(LeaseClient.default_service_name) 
            image_client = robot.ensure_client(ImageClient.default_service_name) 
            source_list = get_source_list(image_client) 
            image_task = AsyncImage(image_client, source_list) 
            robot_state_task = AsyncRobotState(robot_state_client) 
            task_list = [image_task, robot_state_task] 
            _async_tasks = AsyncTasks(task_list) 
            print('Detect and follow client connected.') 
     
            lease = lease_client.take() 
            lease_keep = LeaseKeepAlive(lease_client) 
            # Power on the robot and stand it up 
            resp = robot.power_on() 
            try: 
                blocking_stand(robot_command_client) 
            except CommandFailedError as exc: 
                print(f'Error ({exc}) occurred while trying to stand. Check robot surroundings.') 
                return False 
            except CommandTimedOutError as exc: 
                print(f'Stand command timed out: {exc}') 
                return False 
            print('Robot powered on and standing.') 
            params_set = get_mobility_params() 
     
            # This thread starts the async tasks for image and robot state retrieval 
            update_thread = Thread(target=_update_thread, args=[_async_tasks]) 
            update_thread.daemon = True 
            update_thread.start() 
            # Wait for the first responses. 
            while any(task.proto is None for task in task_list): 
                time.sleep(0.1) 
     
            # Start image capture process 
            image_capture_thread = Process(target=capture_images, 
                                           args=(image_task, options.sleep_between_capture), 
                                           daemon=True) 
            image_capture_thread.start() 
            while not SHUTDOWN_FLAG.value: 
                # This comes from the tensorflow processes and limits the rate of this loop 
                try: 
                    entry = PROCESSED_BOXES_QUEUE.get_nowait() 
                except Empty: 
                    continue 
                # find the highest confidence bounding box 
                highest_conf_source = _find_highest_conf_source(entry) 
                if highest_conf_source is None: 
                    # no boxes or scores found 
                    continue 
                capture_to_use = entry[highest_conf_source] 
                raw_time = capture_to_use['raw_image_time'] 
                time_gap = time.time() - raw_time 
                if time_gap > options.max_processing_delay: 
                    continue  # Skip image due to delay 
     
                # Find the transform to the highest confidence object using the depth sensor 
                get_object_position_start = time.time() 
                robot_state = robot_state_task.proto 
                world_tform_gpe = get_a_tform_b(robot_state.kinematic_state.transforms_snapshot, 
                                                VISION_FRAME_NAME, GROUND_PLANE_FRAME_NAME) 
                world_tform_object = get_object_position( 
                    capture_to_use['world_tform_cam'], world_tform_gpe, capture_to_use['visual_dims'], 
                    capture_to_use['depth_image'], capture_to_use['boxes'][0], 
                    ROTATION_ANGLES[capture_to_use['source']]) 
                get_object_position_end = time.time() 
                print(f'system_cap_time: {capture_to_use["system_cap_time"]}, ' 
                      f'image_queued_time: {capture_to_use["image_queued_time"]}, ' 
                      f'processed_image_start_time: {capture_to_use["processed_image_start_time"]}, ' 
                      f'processed_image_end_time: {capture_to_use["processed_image_end_time"]}, ' 
                      f'get_object_position_start_time: {get_object_position_start}, ' 
                      f'get_object_position_end_time: {get_object_position_end}, ') 
     
                # get_object_position can fail if there is insufficient depth sensor information 
                if not world_tform_object: 
                    continue 
     
                scores = capture_to_use['scores'] 
                print(f'Position of object with confidence {scores[0]}: {world_tform_object}') 
                print(f'Process latency: {time.time() - capture_to_use["system_cap_time"]}') 
                tag_cmd = get_go_to(world_tform_object, robot_state, params_set) 
                end_time = 15.0 
                if tag_cmd is not None: 
                    if not options.test_mode: 
                        print('executing command') 
                        robot_command_client.robot_command(lease=None, command=tag_cmd, 
                                                           end_time_secs=time.time() + end_time) 
                    else: 
                        print('Running in test mode, skipping command.') 
     
            # Shutdown lease keep-alive and return lease gracefully. 
            lease_keep.shutdown() 
            lease_client.return_lease(lease) 
            return True 
        except Exception as exc:  # pylint: disable=broad-except 
            LOGGER.error('Spot Tensorflow Detector threw an exception: %s', exc) 
            # Shutdown lease keep-alive and return lease gracefully. 
            return False  
     
     
    if __name__ == '__main__': 
        if not main(): 
            sys.exit(1)

    C’est un exemple additionnel qui s’inscrit dans les tentatives de mise au rebut total des humains au profit de la machine qui continuent à faire couler beaucoup d’encre

    La technologie des caisses dites automatiques devait révolutionner le shopping. Mais, tant pour les consommateurs que pour les commerçants, elle n’a pas tenu ses promesses comme l’illustre le cas McDonald’s.

    « Ça n’a rien apporté de ce qu’elle promettait », souligne Christopher Andrews, professeur associé et président de sociologie à l’université Drew, aux États-Unis, et auteur de The Overworked Consumer: Self-Checkouts, Supermarkets, and the Do-It-Yourself Economy. « Les magasins voyaient cela comme la nouvelle frontière… S’ils pouvaient faire croire au consommateur que [la caisse automatique] était un moyen préférable de faire ses courses, alors ils pourraient réduire les coûts de main-d’œuvre. Mais ils se rendent compte que les gens ont besoin d’aide pour le faire, ou qu’ils vont voler des choses. Ils ont fini par se rendre compte qu’ils ne font pas d’économies, ils perdent de l’argent ».

    De nombreuses entreprises de vente au détail ont investi des millions - voire des milliards - de dollars dans la technologie des caisses automatiques, qui, selon Andrews, a été développée pour la première fois dans les années 1980, et a commencé à apparaître dans les magasins dans les années 1990. Elles ne sont pas exactement bon marché à installer dans les magasins : certains experts estiment qu’un système de quatre bornes peut coûter six chiffres. Malgré le coût pour les installer, de nombreux détaillants font marche arrière sur la technologie. Target, par exemple, limite le nombre d’articles que les clients des caisses automatiques peuvent acheter en une seule fois. Walmart a supprimé certaines bornes de caisse automatique dans certains magasins pour dissuader les vols. Au Royaume-Uni, la chaîne de supermarchés Booths a également réduit le nombre de bornes de libre-service dans ses magasins, car les clients disent qu’elles sont lentes et peu fiables. Dollar General, l’une des entreprises de vente au détail qui connaît la plus forte croissance aux États-Unis, revoit également sa stratégie.

    En 2022, la chaîne de magasins à prix réduit a misé fortement sur la technologie des caisses automatiques - il n’est pas rare de voir un ou deux employés seulement s’occuper d’un magasin entier de Dollar General dans certaines régions. Mais la société a annoncé en janvier 2024 qu’elle allait réduire le nombre de caisses automatiques dans ses magasins, après avoir constaté que les clients préféraient interagir avec un caissier humain. « Nous avons appris que nos clients apprécient vraiment le contact humain », a déclaré Todd Vasos, le PDG de Dollar General, lors d’une conférence téléphonique avec les analystes.

    Certains services s’appuient même sur les humains pour simuler l’intelligence artificielle

    Lors de l’ouverture de l’Amazon Go Grocery, le premier supermarché automatisé et sans caissiers à Seattle, « Just Walk Out » avait fait l’objet de présentation en tant que « technologie d’achat la plus avancée au monde. » Bien que le service dans ces supermarchés semblait entièrement automatisé, il s'appuyait sur plus de 1000 personnes en Inde qui regardaient et étiquetaient des vidéos pour assurer la facturation « automatique ». En d’autres termes, les caissiers étaient en réalité hors du site, et ils observaient les clients pendant leurs achats. Les rapports y relatifs font état de ce que l’entreprise a décidé de conserver sa « technologie » dans un petit nombre de magasins Fresh au Royaume-Uni et la retirer de ces derniers aux USA.

    Just Walk Out a été introduit pour la première fois en 2016. Cette technologie avait fait l'objet de présentation comme la plus importante et la plus audacieuse d'Amazon en matière d'achats de produits d'épicerie. La technologie semblait incroyable jusqu'à ce qu'on en découvre les dessous. En effet, les clients mettaient souvent des heures à recevoir leurs reçus après avoir quitté le magasin, en grande partie parce que les caissiers délocalisés visionnaient à nouveau les vidéos et attribuaient les articles à différents clients. Le système de scanners et de caméras vidéo dans chaque magasin est en sus très coûteux. D’où la décision d’Amazon d’abandonner cette « technologie » en commençant par ses magasins Fresh aux USA.

    Source : Leapting

    Et vous ?

    Quels sont les secteurs d’activités pour lesquels il est pertinent de mettre à contribution les robots et l’intelligence artificielle ?
    Quels sont les domaines pour lesquelles les tentatives de mise au rebut total des humains au profit des machines et de l’intelligence artificielle continueront de poser problème pour de nombreuses années encore ?

    Voir aussi :

    57 % des travailleurs dans l'industrie technologique dans la Silicon Valley ont déclaré être en burn out, d'après une enquête
    Les chercheurs en intelligence artificielle peuvent-ils gagner jusqu'à 1 million $ par an dans la Silicon Valley ? un aperçu des salaires
    La bulle technologique de la Silicon Valley est plus grande qu'elle ne l'était en 2000, mais sa fin approche selon des analystes
    Contribuez au club : Corrections, suggestions, critiques, ... : Contactez le service news et Rédigez des actualités

  2. #2
    Membre confirmé
    Homme Profil pro
    autre
    Inscrit en
    Juin 2014
    Messages
    289
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Localisation : France, Aveyron (Midi Pyrénées)

    Informations professionnelles :
    Activité : autre

    Informations forums :
    Inscription : Juin 2014
    Messages : 289
    Par défaut
    Sur la vidéo il pose presque 1 panneau/minute.
    J'imagine qu'il y a encore des interventions manuelles derrière mais ça fait déjà un sacré travail !

    Bizarrement, pour une fois qu'on nous montre un robot qui fonctionne et qui est rentable c'est pas un robot humanoïde : il a des roues, un bras et il est spécialisé dans un type de tâche.
    Ha bah non, c'est pas bizarre, c'est logique .

  3. #3
    Membre éprouvé
    Homme Profil pro
    Développeur
    Inscrit en
    Août 2003
    Messages
    1 468
    Détails du profil
    Informations personnelles :
    Sexe : Homme
    Âge : 38
    Localisation : France, Charente Maritime (Poitou Charente)

    Informations professionnelles :
    Activité : Développeur

    Informations forums :
    Inscription : Août 2003
    Messages : 1 468
    Par défaut
    C'est un bon début car la manutention quand il y a du vent ne doit pas être simple

    Là il faut visser les panneaux et les raccorder à l'onduleur. Un gars qui vis en dessous doit suivre à peu près le rythme de 1 panneau/minute par contre le câblage serait plus long.

Discussions similaires

  1. Réponses: 27
    Dernier message: 12/08/2024, 04h00
  2. Réponses: 3
    Dernier message: 20/09/2023, 11h03
  3. Des images montrent un char robot piloté par l'IA qui fait exploser des voitures
    Par Bill Fassinou dans le forum Intelligence artificielle
    Réponses: 3
    Dernier message: 20/06/2022, 14h47
  4. Installation Windows XP par une disquette de demarrage
    Par black is beautiful dans le forum Windows XP
    Réponses: 3
    Dernier message: 28/11/2005, 17h26
  5. Réponses: 1
    Dernier message: 23/08/2005, 14h07

Partager

Partager
  • Envoyer la discussion sur Viadeo
  • Envoyer la discussion sur Twitter
  • Envoyer la discussion sur Google
  • Envoyer la discussion sur Facebook
  • Envoyer la discussion sur Digg
  • Envoyer la discussion sur Delicious
  • Envoyer la discussion sur MySpace
  • Envoyer la discussion sur Yahoo