Reducing Graph Coloring to SAT

A k-coloring of a graph is a labelling of its vertices with at most k colors such that no two vertices sharing the same edge have the same color. The problem of generating a k-coloring of a graph (V, E) can be reduced to SAT as follows. For every $v \in V$ and every $i \in\{1, \ldots, k\}$, introduce an atom $p_{v i}$. Intuitively, this atom expresses that vertex v is assigned color i. Consider the following propositional formulas:

$$
\begin{array}{ll}
\bigvee_{1 \leq i \leq k} p_{v i} & (v \in V), \\
\neg\left(p_{v i} \wedge p_{v j}\right) & (v \in V, 1 \leq i<j \leq k), \tag{1}\\
\neg\left(p_{v i} \wedge p_{w i}\right) & (\{v, w\} \in E, 1 \leq i \leq k) .
\end{array}
$$

The interpretations satisfying these formulas are in a $1-1$ correspondence with k-colorings of (V, E).

Problem 3. (a) Write out formulas (1) for the graph

and $k=2$. (Suggestion: use the abbreviation $p_{A 1}$ for $A 1$, and similarly for the other atoms.) (b) We would like to find a k-coloring of a graph (V, E) such that color 1 is assigned to at most one vertex. Modify formulas (1) accordingly.
Problem 4. Use DPLL to find (a) a 2-coloring of the graph from Problem 3; (b) a 2-coloring of that graph such that color 1 is assigned to at most one vertex.

