
OFFLINE HANDWRITTEN SIGNATURE
VERIFICATION USING SIFT FEATURES

BY

KARANJA EVANSON MWANGI
2006/HD18/6803K

BSc(Computer Science and Maths)(JKUAT)
Email: emkaranja@yahoo.com

Phone: +254-721-764076.

A Project Report Submitted to School of Graduate Studies
in Partial Fulfillment for the Award of Master of Science in

Computer Science Degree of Makerere university

OPTION: Computer Science

December,2008

DECLARATION

I, Karanja Evanson Mwangi do hereby declare that this project report is original and has not been

published and / or submitted for any other degree award to any other university before.

Signed:............................... Date:.....................

KARANJA EVANSON MWANGI

BSc Maths and Computer Science (JKUAT)

Department of Computer Science

Faculty of Computing and Information Technology, Makerere University

i

APPROVAL

This Project Report has been submitted for examination with the approval of the following super-

visor.

Signed:.. Date:...............................

DR JOHN QUINN, Ph.D.

Department of Computer Science

Faculty of Computing and Information Technology, Makerere University

ii

DEDICATION

To my grandparents

Your wisdom, Iam only beginning to understand.

To my beloved parents Mr And Mrs George Karanja

For your support and innumerable words of encouragement when the ardor to complete this task

and many others in my life seemed to wane.

To my brothers John and Crispus

For reminding me inch by inch and everything’s cinch. Thanks for your love and friendship over

the years.

iii

"I’ve always thrived on the encouragement of others." Patti Smith

iv

ACKNOWLEDGEMENT

With exception, I would like to express my sincere gratitude to the Almighty God who is full of

mercy and compassion for giving me strength and good health during the whole period of my

study.

I wish to extend my sincere thanks to my supervisor Dr. John Quinn for his time and nice ideas

that shaped this work. I acknowledge the entire staff of the Faculty of Computing and Information

Technology, especially my lecturers in Masters class for guidance and knowledge given to me

while pursuing the course, not forgetting my course mates for their remarkable social and academic

support. It is memorable to me. Special thanks goes to Dr. Patrick .J. Ogao for his invaluable advice

as a friend and a mentor.

Iam highly indebted to my family for material support during the course of my study.

I will not forget to thank many friends I met during my stay in Uganda, some of whom con-

tributed to this study by providing constructive critictism and sample signatures. Though I might

not be able to name all these wonderful people by name. I sincerely extend my thanks and appre-

ciation.

Thanks goes to Wairagu, Margaret, George, Dickson and Moses for openness and availability

to discuss diverse social and academic issues.

I appreciate the friendship and support I got from Alois, Agnes, kris, Gerald, Miriam, Muiruri

and Justin during the last but hard days of the research.

Much technical help came from many online discussion forums I engaged in particulary Matlab

usergroup (www.mathworks.com). My thanks goes to the contributors of this forum especially

Walter Roberson, who took his time and clarified my queries with e-mail communication which

were very fruitful.

A great many people had a hand in ensuring the success of this work. If there’s anybody I’ve

forgotten to acknowledge, I apologize unreservedly . May God bless you more.

Be blessed and thanks to you all.

v

Contents

DECLARATION . i

DEDICATION . iii

QUOTE . iv

ACKNOWLEDGEMENT . v

LIST OF FIGURES . x

LIST OF TABLES . xi

LIST OF ABBREVIATIONS AND ACRONYMS . xiii

ABSTRACT . xiv

1 BACKGROUND 1

1.1 Introduction . 1

1.2 Definition of Terms . 3

1.3 Statement of the Problem . 4

1.4 Objectives of the Study . 5

1.4.1 General Objectives of the Study . 5

vi

1.4.2 Specific Objectives of the Study . 5

1.5 Scope . 5

1.6 Significance of the Study . 5

2 LITERATURE REVIEW 6

2.1 Hidden Markov Model (HMM) based . 6

2.2 Fuzzy Logic Based Approaches . 7

2.3 Neural Networks . 7

2.4 Graph Matching . 8

2.5 Statistical and Distance Classifiers . 8

2.5.1 Limitations of Existing Statistical and Distance Classifiers 10

2.6 Support Vector Machine . 10

2.7 Incorporating a Prior Model . 10

2.8 SIFT Related Work . 11

3 METHODOLOGY 15

3.1 Introduction . 15

3.2 Steps Used in Offline Handwritten Signature Verification 15

3.3 Signature Enrolment . 16

3.3.1 Image Pre-Processing . 16

3.3.2 Extraction of SIFT Features From Signatures 16

vii

3.3.3 Calculation of Euclidean Distances . 17

3.3.4 Creation of the Known Signature Template. 18

3.4 Signature Verification . 19

3.4.1 Outlier Detection . 20

3.4.2 Comparison and Decision Criteria . 20

3.5 Measurement of the Signature Verifier Accuracy 22

3.6 Comparison with Human Expert . 23

3.7 The Proposed Algorithm . 24

4 RESULTS 25

4.1 Introduction . 25

4.2 Examples of Verified Signatures . 25

4.3 Results from the Proposed Method . 28

4.3.1 Maximum Distance . 29

4.3.2 Average Distance . 29

4.3.3 Minimum Distance . 29

4.3.4 Range of±0.05 on Maximum Distance 30

4.3.5 Range of±0.05 on Minimum Distance 30

4.3.6 Range of±0.05 on Maximum Distance and Range of±0.05 on Minimum

Distance . 31

4.4 Results from Human Experts . 31

viii

4.5 Comparison of Human Experts and Proposed Algorithm 33

5 CONCLUSIONS AND AREAS OF FURTHER RESEARCH 34

5.1 Conclusions . 34

5.2 Areas of Further Research . 35

5.2.1 Alternative Distance Measures . 35

5.2.2 SIFT Features and Online Handwritten Signature Verification 35

6 APPENDICES 36

6.1 Appendix A . 36

6.1.1 MATLAB Functions . 36

6.1.2 MATLAB Scripts . 39

6.2 Appendix B . 116

ix

List of Figures

1.1 Forgery classification (reproduced from [1]). 3

2.1 Difference -of- Gaussian computation. 12

2.2 Scale space extrema detection (Reproduced from [2]). 13

3.1 Example of space scale Gaussian images. 17

3.2 Example of a signature with extracted SIFT features. 17

3.3 Example of intra-personal variation. 19

3.4 Steps in signature enrolment. 19

3.5 Flowchart showing signature enrolment and verification. 21

3.6 Confusion matrix for analysing accuracy. 23

4.1 Example 1 of genuine signatures of a known writer. 26

4.2 Test signature correctly classfied as genuine by all the tests. 26

4.3 Example 2 of genuine signatures of a known writer. 27

4.4 Test signature correctly classfied as forgery by all the tests. 28

6.1 Signatures used in the project. 117

x

List of Tables

4.1 Image distances set of known signatures 16.png, 17.png and 18.png. 27

4.2 Image distances between test signature 19.png and set of known signatures. 27

4.3 Image distances set of known signatures 41.png, 42.png and 43.png. 28

4.4 Image distances between test signature 45.png and set of knowns 41.png, 42.png

and 43.png. 28

4.5 Performance statistics obtained by the classifier using maximum class distances. . . 29

4.6 Performance statistics obtained by the classifier using average class distances. . . . 29

4.7 Performance statistics obtained by the classifier using minimum class distances. . . 30

4.8 Performance statistics obtained by the classifier using the range test on maximum

class distances. 30

4.9 Performance statistics obtained by the classifier using the range test on minimum

class distances. 31

4.10 Performance statistics obtained by the classifier using the range test on both mini-

mum and maximum class distances. 31

4.11 Performance statistics obtained by the first human expert. 32

4.12 Performance statistics obtained by the second human expert. 32

xi

4.13 Performance statistics obtained by the third human expert. 32

4.14 Performance statistics obtained by the fourth human expert. 33

4.15 Summary of performance statistics obtained by the human experts. 33

4.16 Comparison of sensitivity and specificity obtained by the human experts and the

proposed SIFT method. 33

xii

LIST OF ABBREVIATIONS AND ACRONYMS

TP True Positive
FP False Positive
FN False Negative
TN True Negative
FAR False Acceptance Rate
HMM Hidden Markov Model
NN Neural Networks
SIFT Scale Invariant Features Transform
AER Average Error Rate
EER Equal Error Rate
FRR False Rejection Rate
HSV Handwritten Signature Verification
FA False Acceptance
SVM Support Vector Machine
DoG Difference-of-Gaussian

xiii

ABSTRACT

In this research we evaluate the use of SIFT features in offline handwritten signature verification.

For each known writer we take a sample of three genuine signatures and extract their SIFT de-

scriptors. We calculate the intra-class Euclidean distances (measure of variability within the same

author) among SIFT descriptors of this known signatures. The keypoints Euclidean distances, the

image distances and the intra class thresholds are stored as templates. We evaluate use of various

intra-class distance thresholds like the maximum, average, minimum and range. For each signature

claimed to be of the known writers, we extract its SIFT descriptors and calculate the inter-class dis-

tances, that is the Euclidean distances between each of its SIFT descriptors and those of the known

template and image distances between the test signature and members of the the genuine sample.

The intra-class threshold is compared to the inter-class threshold for the claimed signature to be

considered a forgery. A database of 90 signatures consisting of a training set and a test set is used.

The training set is made up of 54 genuine signatures from 18 known writers each contributing a

sample of 3 signatures. The testset consists of 36 signatures, 18 genuine signature and 18 forged

signature. The specificity and sensitivity of the verifier is measured and compared with the results

from the analysis of human expert.

xiv

Chapter 1

BACKGROUND

1.1 Introduction

Handwritten signatures are widely accepted as a means of document authentication, authorization

and personal verification. For legality most documents like bank cheques, travel passports and aca-

demic certificates need to have authorized handwritten signatures. In modern society where fraud

is rampant, there is the need for an automatic HSV(Handwritten signature verification) system to

complement visual verification.

Automated signature verification is as important as other automatic identification systems, though

they differ from other systems that rely on possession of keys e.t.c or knowledge of specific per-

sonal information like passwords. They rely on well learned gestures and still they are most socially

and legally accepted form of personal identification [3, 4].

Biometrics can be classified into two types; physiological and behavioural. Physiological biomet-

rics measure some physical features of the subject like fingerprints, iris, hand and finger geometry

which are stable over time. Behavioural biometrics measures user actions like speaking, writting

and walking which are affected by health, age and physiological factors [5, 6]. A signature is a

behavioural biometric characterised by behavioural trait that a writer learns and acquires over a

period of time and becomes his unique identity [7, 5].

HSV systems are suited for forgery detection as they are cheap and nonintrusive and provide a

direct link between the writer’s identity and the transaction [1]. The objective of signature ver-

1

ification systems is to differentiate between original and forged signature, which are related to

intra-personal and inter-personal variability [8, 9]. Intra-personal variation is variation among the

signatures of the same person and inter-personal is the variation between the originals and the forg-

eries [9, 7].

We make a distinction between signature recognition and signature verification. Verification de-

cides whether a claim that a particular signature belong to a specific class (writer) is true or false

whereas recognition decides to which of a certain number of classes(writers) a particular signature

belongs [1, 10, 5].

Automatic HSV systems are classified into two: offline HSV and online HSV [11, 12]. The online

signature is captured using a special pen called a stylus and digitizing tablet and analysis is based

on dynamic characteristics like pressure, velocity, acceleration and capture time of each point on

the signature trajectory. In offline systems the input is a static image that is scanned and used for

analysis. Both offline and online systems are used to detect various types of forgeries.

Signature forgeries are classified as follows [8, 13, 1, 4, 12]:

(i) Random/simple or zero effort. The forger doesnt have the shape of the writer signature but

comes up with a scribble of his own. He may derive this from the writers name. This forgery

accounts for majority of forgery cases though its easy to detect with naked eyes.

(ii) Unskilled /casual forgery. The forger knows the writers signature shape and tries to imitate

it without much practice.

(iii) Skilled forgeries . This is where the forger has unrestricted access to genuine signature model

and comes up with a forged sample.

The skilled forgery category has been classified further into amateur and professional forgery. A

professional forgery is done by a person with professional expertise in handwriting analysis and is

able to come up with high quality forgery.

The amateur forgeries are subcategorized in the context of online verification into home-improved

and over-the-shoulder forgeries. Home-improved is when the forger has a paper copy of the signa-

ture and has ample time to practice at home. The imitation is based on static features of the image.

2

Over-the shoulder forgeries are produced when immediately the forger has witnessed the writer

make a genuine signature, the forger in this case has dynamic properties of signature and spatial

image [1, 4].

The Figure 1.1 shows the classification of forgeries.

Figure 1.1: Forgery classification (reproduced from [1]).

1.2 Definition of Terms

Definition of some terms that are used in the project.

Definition 1: Pattern Matching is the science that concerns the description or classification of

measurements based on underlying model [14].

Definition 2: False Rejection (FR)is when a genuine signature is rejected as a forged signature

[13].

Definition 3: False Acceptance (FA)is when a forged signature is accepted as a genuine signature

[13].

Definition 4: False Rejection Rate (FRR) is ratio of the number of genuine signatures rejected

to the total number of genuine signatures submitted [1].

Definition 5: False Acceptance Rate (FAR)is ratio of the number of forged signatures accepted

3

to the total number of forged signatures submitted [1].

Definition 6: Average Error Rate (AER) is the average of FAR and FRR [1].

Definition 7: Equal Error Rate (EER) is a point where FAR and FRR are equal [1, 4].

1.3 Statement of the Problem

Most of the available offline handwritten signature verification methods do not cater for scale and

rotation variation. The Scale Invariant Feature Transform (SIFT) is an image processing algorithm

that takes an image and transforms into a collection of local feature vector. Each of this feature

vectors is distinctive and invariant to any scaling ,rotation or translation of the image . The SIFT

algorithm has proved to be efficient in both recognition and verification problems but has not been

used to solve HSV problems. Fraud, especially handwritten signature forgery, is rampant across

all sectors of the economy, from universities to banks. Banks lose billions of dollars through fraud-

ulent encashment of checks. According toErnst and Youngreport, more than 500 million cheques

are forged every year and this leads to more than $ 10 billion in losses [15] . The figure is predicted

to grow at a rate of 2.5 % annually.

Here in Uganda, cheque fraud is rampant. The American embassy in Kampala has issued a busi-

ness fraud warning [16]. The fraud scam involves criminals in Uganda who steal or intercept

original checks drawn on American bank accounts, modify the information on the checks, and

then use them to purchase goods from American vendors. It is estimated that $1 million was lost

in 2006 due to this. Bank of Uganda reports that despite that cheque settlements constitutes the

largest form of settlement in the banking sector, cheque fraud (which includes signature forgery) is

the fastest growing financial crime in Uganda [17]. Training institutions lose credibility when in-

competent persons impersonate to be their graduates in the labour markets with forged documents .

Despite this eminent problem of signature forgery there is no economical and reliable automated

handwritten signature verification system available to be used across all sectors of the economy to

suplement human verification.

4

1.4 Objectives of the Study

1.4.1 General Objectives of the Study

To offer an efficient and economically viable state of the art system for offline handwritten signa-

ture verification that can be used by various stakeholders .

1.4.2 Specific Objectives of the Study

The specific objectives of this research project were:

(i) Collection of handwritten signature samples to be used as training and testing set.

(ii) Algorithm design and implementation of signature feature extraction and pattern classifica-

tion.

(iii Testing the accuracy of the verifier.

1.5 Scope

The project dealt with static images of handwritten signatures. The genuine signature samples

taken from known writers and the forgery sets were generated imitating the genuine set. Only

SIFT features were used as signature image descriptors.

1.6 Significance of the Study

The research project sought to evaluate use of SIFT in solving handwritten signature verification

problems. SIFT descriptors are robust image descriptors and cheap to compute in terms of process-

ing requirements compared with other methods like neural networks and they can easily be used

in low resourced environments to reduce losses that arise from forged handwritten signatures and

assist to make timely decision.

5

Chapter 2

LITERATURE REVIEW

Vigorous research has been pursued in handwriting analysis and pattern matching for a number of

years. In the area of HSV, especially offline HSV, different technologies have been used and still

the area is being explored. In this section we review some of the recent papers on offline HSV.

The approaches used by different researchers differ in the type of features extracted, the training

method, the classification and verification model used. The categorization for these approaches

done here is influenced by classification used in [18].

2.1 Hidden Markov Model (HMM) based

The approach of Justino et al [19], uses the graphometric features, that is static features like the

density of pixels and the pseudo dynamic features represented by axial slant. They employ grid

segmentation and divide the signature image into four zones each with column containing cells

with horizontal and vertical projections. Each column is converted to a characteristic vector as-

signed a numeric value. A HMM is used for the learning and verification process.

In [1], a system is introduced that uses only global features. A discrete radon transform which

is a sinograph is calculated for each signature binary image at range of0 − 360 ◦, which is a func-

tion of total pixel in the image and the intensity per given pixel calculated using non overlapping

beams per angle for X number of angles. Due to this periodicity, it is shift, rotation and scale in-

variant. A HMM is used to model each writer signature. The method achieves an AER of 18.4%

for a set of 440 genuine signatures from 32 writers with 132 skilled forgeries.

6

2.2 Fuzzy Logic Based Approaches

In [20], global features of the signature like the skeleton of the pen trace and the structure of upper

and lower envelope are used as shape descriptors. These are obtained by sampling upper and ex-

ternal points from the binary image of the signature. High pressure regions where the writer made

more pressure or emphasis to is generated to a linear function that is be used for maximizing the

correlation between the vertical and horizontal projections of the skeleton. For each of the above

shape descriptors a multi- layer perception is assigned and the network is trained with a modified

back propagation algorithm and the output of each individual network is combined through a fuzzy

integral voter. Using a test set of 1000 signatures the approach obtained 90% true verification.

The authors in [21] propose the system that extracts angle features that are modelled in to a fuzzy

model based on Takagi-Sugeno model. The model is extended to include structural parameters that

account for variation in writers styles and changes in mood and the inputs are optimized to derive

multiple rules. This approach obtained over 70% true verification.

2.3 Neural Networks

The proposed system in [22] uses structure features from the signatures contour, modified direc-

tion feature and additional features like surface area,length skew and centroid feature in which a

signature is divided into two halves and for each half a position of the centre of gravity is cal-

culated in reference to the horizontal axis. For classification and verification two approaches are

compared the Resilient Backpropagation (RBP) neural network and Radial Basic Function(RBF)

using a database of 2106 signatures containing 936 genuine and 1170 forgeries. These two classi-

fiers register 91.21% and 88 % true verification respectively.

The approach of [5] attempts to combine online and offline HSV. For static images the scale, rota-

tion and displacement invariance is represented as a normalized Fourier descriptor that is yielded

through retracing the contour repeatedly and the results of the periodic function expressed as a

Fourier series. For a dynamic image a speed function is used as a descriptor. The online retrace is

compared with the offline image template. For classification a Multilayer Perception (MLP) neural

network is used with one input layer, one hidden layer and one output layer. The results presented

7

are for dynamic image.

2.4 Graph Matching

The work of Abuhaiba [4] avoids the use of features and uses only raw binary pixel intensities.

Offline HSV problem is formulated as graph matching problem. A binary image is represented as

graph with a set of vertices and edges, the goal is to get the minimum cost of matching which is

represented as a classic form of assignment problem in graph theory. The method test 75 signatures

for Skilled forgery and 300 signatures for random forgery. This reports 26.7% and 5.6% FAR,

26.7% and 5.6% EER for skilled and random forgeries respectively.

2.5 Statistical and Distance Classifiers

The uniqueness of writers’ handwriting is mapped with that of the signature in Srihari et al[7]. The

writer signs in a predefined space of 2×2 inches and rotation is normalized with the horizontal

axis. The gradient, structural and concavity are used as image descriptors. The gradient detects

the local features of the image and the concavity detects the relationship between the structural

and the local features. The verification model is based on the bayesian classifier is that uses mean

and variance measures to classify. The system uses two databases of signature with a total of 106

writers and 3960 samples and obtain FRR of 21.90% and 30.93% respectively .

The system used in [23] uses global descriptors and local features. The approach split the signature

into regions(envelopes) and get the Centre of Gravity (CoG) of sub region and the distance made

by the CoG and the strokes whitespaces. The learning algorithm used is C4.5 and the classifying

method is based on a decision tree. The method uses 100 genuine signature and 300 forgeries from

20 people who consist of 15 Chinese and 5 people providing English signatures. For both cases

over 90% success verification is reported.

A unique method is introduced in [14]. In this approach various features are extracted which in-

clude global features like image gradient, statistical features derived from distribution of pixels of a

signature and geometric and topographical descriptors like local correspondence to trace of the sig-

nature. The classification involves obtaining variations between the signatures of the same writer

8

and obtaining a distribution in distance space. For any questioned signature the method obtains

a distribution which is compared with the available knowns and a probability of similarity is ob-

tained using a statistical Kolmorogorv-Smirnov test. Using only 4 genuine samples for learning the

method achieves 84% accuracy which can be improved to 89% when the genuine signature sam-

ple size is increased.This method does not use the set of forgery signatures in the training/learning.

The method in [8] uses the geometric centre for feature extraction. The centre is obtained through

vertical and horizontal splitting of the image. The signatures used are taken at different time peri-

ods to show the intrapersonal variations. The classification is done through a Euclidean classifier

model which is a measure of variance between any two image vectors. For testing 21 genuine

signatures and 30 forgeries are used. A set of 9 signatures is used for training the model, FAR

obtained are 2.08% , 9.75% and 16.36% for random ,simple and skilled forgeries repectively. The

FRR for original signatures is 14.58%.

In [24], a system that adopts an expert examiner approach is used which employs a smoothness

criterion. The basis is formed in that that skilled forgery signature greatly resemble genuine one at

a global scale but they are less smooth. They derive a smoothness index as a ratio of non smooth

segments to total extracted segments and combine it with global features like baseline shift, aspect

ratio. Using a database of 1320 genuine signatures from 55 writers each contributing 24 signatures

and 1320 skilled forgeries from 12 writers each imitating two signatures for each of the 55 initial

writers an AER of 21.7% was achieved.

Fang et al [25] uses similar approach as [24] but uses crossing method and fractal dimension

method to extract the smoothness feature which they combine with global features. A minimum

distance classifier is used for verification. For a database of 55 writers, with 24 skilled forgeries

and 24 genuine signatures for each writer. An AER of 17.3% was achieved.

The system introduced in Miike et al [26] uses displacement extraction approach, where the dis-

placement function between any two pair of signatures is the sum of the squared Euclidean distance

between them and a penalty that ensures the smoothness of the displacement function. Based on

this displacement a measure of dissimilarity is obtained between the genuine and forged signature.

A data base of 20 writers is used with 10 training signatures,10 signatures for genuine set and 10

for forgeries. An AER of 24.9% is achieved. The Euclidean distance is achieved when the mean

vector and the variance are used for estimation.

9

Use of a set of contour features that can describe the internal and external feature of the signa-

ture is proposed in [27]. The verification is based on Mahalanobis distance classifier. The training

and testing is done through leave-one-out method. A data base of 20 writers is used with 10 train-

ing signatures, 10 signatures for genuine set and 10 for forgeries. An AER of 11.4% is achieved

[26]. Mahalanobis distance is achieved when a mean vector and the full covariance matrix of a

given class is estimated and trained.

2.5.1 Limitations of Existing Statistical and Distance Classifiers

Most of the existing statistical and distance based classifiers deals with geometric and structural

features of the signatures and they do not cater for scale, rotation ,transformation and affine varia-

tion.

2.6 Support Vector Machine

Support Vector Machines (SVMs) are machine learning algorithms that uses a high dimentional

feature space and estimate differences between classes of given data to generalize unseen data. The

system in [12] uses global, directional and grid features of the signature and SVM for classification

and verification. The database of 1320 signatures is used from 70 writers. 40 writers are used for

training with each signing 8 signatures thus a total of 320 signatures for training. For initial testing

the approach uses 8 original signatures and 8 forgeries achieves FRR 2% and FAR 11%.

2.7 Incorporating a Prior Model

In [11], Lin et al infer that in practical cases a set of forgeries for testing is not available and

propose a model like one used in [14] that only require the set of genuine signatures. They use a

two stage approach with the training stage where learning parameter of the classifier is used and

application stage with primary classifier to get the new user signature and final classifier to map

the output of primary classifier and the mapping obtained at the training stage. It uses the global

features that provide information about the whole structure of the signature. Grid gray features are

10

obtained as a average gray value in each grid overlapped on the preprocessed image and pseudo-

dynamic features descriptors like ink distribution. For each set of descriptors, the classifiers give

the FRR and FAR for simple forgery as follows. Texture feature 25% and 30.56%; grid features

25.42% and 22.78%, global feature 42.08% and 27.22 % for FRR and FAR respectively.

2.8 SIFT Related Work

Proposed by David Lowe, Scale Invariant Features Transform (SIFT) is used to extract distinctive

invariant features from images [2]. The SIFT algorithm is robust for identifyingstable key locations

in the scale- space of a grey scale image [2, 28]. It uses the following four steps to extract the set

of descriptors from a given image [2].

(i) Scale-Space extrema detection.

(ii) Accurate Keypoint localisation.

(iii) Orientation assignment.

(iv) Keypoint description.

Step 1: Scale-Space extrema detectioninvolves searching over all scales and location of the sig-

nature image to detect key points of all sizes. This is done using a difference-of-Gaussian (DoG)

function to identify potential interest points that are invariant to scale and orientation [28].

For each octave of scale space, the image is convolved with Gaussian functions producing a set of

scale space images. Adjacent Gaussian images are subtracted to produce difference-of -Gaussian

images. After each octave the Gaussian image is halved and the process is repeated. Figure 2.1

illustrates the blurred images at different scales and the computation of difference -of- Gaussian

(DoG).

The Scale-space of a signature image is defined as the functionL(x,y,α),which is convolution

of a variable scale GaussianG(x,y,α) with an input signature imageI(x,y) as follows [2]:

11

Figure 2.1: Difference -of- Gaussian computation.

L(x,y,α) = G(x,y,α) ∗ I(x,y) (2.1)

where * is the convolution in thex andy directions, and

G(x,y,α)= 1
(2πα2)1/2 exp(−x2+y2

2α2) (2.2)

The difference between two nearby scales,D(x,y,α), separated by a constant multiplicative factor

k is given by

D(x, y, α) = (G(x, y, kα) − G(x, y, α)) ∗ I(x, y) (2.3)

= L(x, y, kα) − L(x, y, α) (2.4)

The keypoints are identified as local maxima and minima of the DoG signature images across

scale. Each pixel in the DoG is compared to other 8 neighbouring pixels at the same scale and

9 corresponding neighbours at the neighbouring scales. If the keypoint is the local maxima or

minima, it is selected as a candidate keypoint. Figure 2.2 illustrates detecting the maxima and

minima of difference-of-Gaussian in scale space.

12

Figure 2.2: Scale space extrema detection (Reproduced from [2]).

Step 2: Accurate keypoint localisation.For each candidate keypoint identified, the interpolation

of nearby data is used to accurately determine its point. Keypoints with low contrast (sensitive to

noise) are dropped together with the responses poorly localised along the edges.

Step 3: Orientation Assignment. Each keypoint is assigned one or more orientations based on

local image gradients directions. To determine the keypoint orientation, a gradient orientation his-

togram is computed in the neighborhood of the keypoint using the Gaussian image at the closest

scale to the keypoints.

The contribution of each neighboring pixel is weighted by the gradient magnitude and a Gaus-

sian window withα set to be 1.5 times the scale of the keypoint. This contributes to stability [2].

Peaks at the histogram are correspondent with dominant orientation. Any keypoint that is within

80% of the highest peak is used to create a separate keypoint. The orientation assignment of each

keypoint is obtained by computing the gradient magnitudeM(x,y) and orientationθ(x, y)of the

scale space for the scale of that keypoint:

M(x,y)=
√

(K(x + 1, y) − K(x − 1, y))2 − (K(x, y + 1) − K(x, y − 1))2 (2.5)

and

θ(x, y)=arctanK(x,y+1)−K(x,y−1)
K(x+1,y)−K(x−1,y)

(2.6)

All the properties of the keypoint are measured relative to the keypoint orientation. This caters for

rotation invariance.

13

Step 4: Keypoint Description. Local image gradients are measured at the selected scale in the

region around each key point and transformed into a representation that allows local shape distor-

tion and change in illumination.

When the keypoint orientation is selected, feature descriptors are computed as a set of orienta-

tion histograms on 4×4 pixel neighborhoods. The orientation histograms are relative to the key-

point orientation, and the orientation data comes from the Gaussian image closest in scale to the

keypoints scale. The contribution of each pixel is weighted by the gradient magnitude and by a

Gaussian withα 1.5 times the scale of the keypoint. Histograms contain 8 bins each and each

descriptor contains an array of 4 histograms around the keypoint. This gives a SIFT feature with

4×4×8=128 values. This vector is normalized to enhance invariance to illumination.

SIFT features have the following advantages compared to other shape descriptors [2].

(i) Locality-Features detected are local and robust to clutter and occulsion.

(ii) Distinctiveness-Individual features can be matched to a large database.

(iii) Quantity -Many features can be generated even for small objects.

(iv) Efficiency for real time performance.

(v) Extensibility -They can be extended to different dimensions each with added robustness.

SIFT features have been used in pattern recognitionand classification, mostly in object recognition.

The work of Kim et al [29] uses SIFT features for robust digital watermarking. In [30] , the SIFT

algorithm is used for face authentication using frontal view templates and evaluated for recognition

of graffiti tags in [31] both with good results. Dlagnekov in his thesis used SIFT features for

car make and model recognition with 89.5% true recognition rate [32]. More recently, use of

SIFT features in fingerprint verification has been investigated [33]. Unlike these SIFT related work

where the verification models have landmark features that have no intra class variability e.g. the

location of the mouth and eyes in frontal view face authenticationand minutiae points in fingerprint

verification, which makes it easier to compute the nearest neighbours from these invariant points

and do one to one mapping between the training class and the test class. Signatures have natural

variance even among genuine signatures.

14

Chapter 3

METHODOLOGY

3.1 Introduction

Computer vision is often concerned with recognition of objects in a manner invariant to scale,

pose, illumination and affine distortion. The SIFT algorithm takes an image and transforms it into

a collection of local features where each of these feature vectors are distinctive and invariant to any

scaling, rotation or translation of the image. In this project the SIFT features were considered. The

implementationwas done in MATLAB 6.0. The approach taken is a two step process with signature

enrolment and verification. The forged signatures in the test set were generated by imitating the

genuine signatures for each class on a piece of paper. The forgery was done by two people each

generating a sample of three forged signatures per class which were given to a third party to chose

one forgery which closely resembles the genuine set. Each forged signature was also scanned,

cropped and stored in portable network graphic format. The results obtained from SIFT based

verifier was compared with the results from human experts. Our original aim to use benchmark

datasets from other research studies was not possible due to lack of cooperation and unavailability

of online public datasets which are purely for offline handwritten signatures.

3.2 Steps Used in Offline Handwritten Signature Verification

The approach used for offline handwritten signature verification was broadly divided into two

steps, signature enrolment and signature verification. Signature enrolment had four sub steps

15

namely image pre-processing, extraction of SIFT features from signatures, calculation of Eu-

clidean distances between images and creation of the known class signatures template. Signa-

ture verification had two sub steps namely outlier detection and comparison of test signature with

known set so as to make a decision whether it is a genuine signature or not.

3.3 Signature Enrolment

Signature enrolment involved preparation of signatures, extraction of SIFT features and registra-

tion of signatures images and their SIFT features in the system.

3.3.1 Image Pre-Processing

The images used were signatures and were extracted from documents through scanning and crop-

ping. A random sample of 18 signers was used, each signer contributed a sample of 3 signatures

giving a total of 54 genuine signatures for the training set. The test set consisted of 18 genuine

signatures and 18 forged signatures giving a total of 36 signatures for the test set. A database of

90 signatures was used in overall i.e. the training set and test set. Signature images were stored

in portable network graphic (PNG) format. These images were converted to greyscale for further

processing.

3.3.2 Extraction of SIFT Features From Signatures

This involved identifying stable shape descriptors from the pre processed signature image as de-

scribed in Section 2.8 . The implementation that was used for extracting SIFT features was adopted

from a MATLAB function written by El-Maraghi [34]. Figure 3.1 shows an example of scale space

Gaussian images for one of the signatures in the test set. Figure 3.2 shows a sample signature and

its keypoints and their orientation.

16

Figure 3.1: Example of space scale Gaussian images.

Figure 3.2: Example of a signature with extracted SIFT features.

3.3.3 Calculation of Euclidean Distances

This involved calculation of the Euclidean distances between the SIFT features of two given sig-

nature images to measure the variability between them. The motivation to use Euclidean distance

as a measure of variability between images is derived from its success in object recognition [28]

and lately in fingerprint verification [33]. Say we have two signaturesA andB. Let Ai be theith

keypoint in signatureA andBj be thejth keypoint in signatureB. The distance D(Ai,Bj) was

calculated as the Euclidean distance betweenAi andBj. Ka, Kb are the number of keypoints in

signature A and B respectively. The distance measure D(Ai,B) was taken as the average Euclidean

distance from the ith keypoint in signatureA to all the keypoints of signatureB. The image distance

17

between signatureA and signatureB is given by :

D(A,B) =
1

Ka

Ka∑

i=1

D(Ai, B) (3.1)

3.3.4 Creation of the Known Signature Template.

The implementation focused on upholding anonymity of the signers. Only the signatures and ar-

bitrary writer IDs were used. For each known writer, a sample of three signatures sayA, B andC

were taken to cater for intra-personal variations. A template was generated as a MATLAB file and

stored. The template has the following:

(i) Writer ID.

(ii) The Euclidean distances between keypoints i.e. D(Ai,B), D(Ai,C), and D(Bj,C).

(iii) The distances between the Signature images i.e. D(A,B), D(A,C) and D(B,C).

(iv) Intra-class thresholds: The maximum amongD(A,B),D(A,C) andD(B,C) i.e.

max (D(A,B),D(A,C),D(B,C)). The minimum amongD(A,B),D(A,C) andD(B,C)

i.e. min (D(A,B),D(A,C),D(B,C)). The average onD(A,B),D(A,C) andD(B,C)

i.e. avg (D(A,B),D(A,C),D(B,C)). The range on maximum intra-class distance given

by max (D(A,B),D(A,C),D(B,C))± 0.05. The range on minimum intra -class distance

given bymin (D(A,B),D(A,C),D(B,C))± 0.05.

18

Figure 3.3 is an example of a sample of three genuine signatures of a known writer taken to

cater for intra-personal variation.

Figure 3.3: Example of intra-personal variation.

Figure 3.4 Summarizes the signature enrolment stage.

Figure 3.4: Steps in signature enrolment.

3.4 Signature Verification

Verification is the process of testing whether a claimed signature is of the same (class) writer as the

set of signatures enrolled in the system for that class. Verification involved loading the template

MATLAB file enrolled in the system and comparing its stored parameters with those calculated by

the outlier detection process.

19

3.4.1 Outlier Detection

Given a test signature say T claimed to be of a particular writer, the Euclidean distances were

calculated between the test signature and each of the three sample signatures (as discussed in Sub-

section 3.3.3) resulting to distances between the images i.e. D(T,A), D(T,B) and D(T,C).

The inter-class thresholds,max (D(T,A),D(T,B),D(T,C)), min (D(T,A),D(T,B),D(T,C)),

avg (D(T,A),D(T,B),D(T,C)) are computed.

3.4.2 Comparison and Decision Criteria

The comparison between the distance parameters of the SIFT features of the claimed test sig-

nature was done with those of the stored template. Each decision criteria was a binary clas-

sification and was taken independently. We letW be (D(T,A),D(T,B),D(T,C)) and Z be

(D(A,B),D(A,C),D(B,C)).

Test 1: Comparing inter-class maximum distance with intra-class maximum distance as

threshold.

We classify T as genuine if the condition

max (Z) > max (W) (3.2)

holds, otherwise we classify T as not genuine.

Test 2: Comparing average of inter-class distances with the average of intra-class distance as

threshold.

We classify T as genuine if the condition

avg (Z) > avg (W) (3.3)

holds, otherwise we classify T as not genuine.

Test 3: Comparing inter-class minimum distance with intra-class minimum distance as thresh-

old.

We classify T as genuine if the condition

min (Z) > min (W) (3.4)

holds, otherwise we classify T as not genuine.

Test 4: Using a range of 0.05 on the maximum intra-class distance as a threshold and com-

paring with inter-class maximum distance.

20

We classify T as genuine if the condition

max (Z) ± 0.05 > max (W) (3.5)

holds, otherwise we classify T as not genuine.

Test 5: Using a range of 0.05 on the minimum intra-class distance as a threshold and com-

paring with inter-class minimum distance.

We classify T as genuine if the condition

min (Z)) ± 0.05 > min (W)) (3.6)

holds, otherwise we classify T as not genuine.

Test 6: Using a range of 0.05 on both the minimum intra-class distance and minimum intra-

class distance as a threshold such that the minimum and maximum inter- class distance

should lie within that range.

We classify T as genuine if the condition

max (Z) ± 0.05 > max (W) and min (Z) ± 0.05 > min (W) (3.7)

holds, otherwise we classify T as not genuine.

Figure 3.5 summarizes the signature enrolment and verification .

Figure 3.5: Flowchart showing signature enrolment and verification.

21

3.5 Measurement of the Signature Verifier Accuracy

To measure the accuracy of the verifier, a set consisting of genuine signatures and forged signatures

was used and various performance statistics were used. These statistics are standard in machine

learning literature, see example in Section 5.7 of [35].

(i) True Positive (TP) - A classification is a true positive if the signature is genuine (of known

writer) and the output of the verifier ascertains that.

(ii) False Positive(FP) - A classification is a false positive if the signature is forged and the

output of the verifier claims that it is genuine.

(iii) True Negative (TN) - A classification is a true negative if the signature is forged and the

output of the verifier ascertains that.

(iv) False Negative(FN) - A classification is a false negative if the signature is genuine (of

known writer) and the output of the verifier claims that it is forged.

(v) The sensitivity is the proportion of actual positives (genuine signatures) which are correctly

identified as positives. which is given by:

Sensitivity =
TP

TP + FN
(3.8)

(vi) The specificity is the proportion of negatives (forgeries) which are correctly identified,

which is given by:

Specificity =
TN

TN + FP
(3.9)

22

The test for accuracy of the system is summarised in Figure 3.6 :

Figure 3.6: Confusion matrix for analysing accuracy.

3.6 Comparison with Human Expert

Four human experts were used; two bankers, a loan officer and a forensic accountant. These experts

have wide experience in different working environments in the financial and business sector where

signature forgery is rampant. Among their daily routines is to verify signatures before transactions

are authorised.

The human experts were given the same sample of three signatures for each class of known writer

to study their features . This training set and test set were the same ones earlier used as training set

and test set in SIFT based verification. For each class, a test set of two signatures was given con-

taining one forged signature and one genunine signature. Each of the test signature was compared

with its class of knowns independently.

For each class they studied the features of the three known signatures and based on those fea-

tures classify each the two test signatures as either genuine or forgery. To measure the accuracy

of a human expert the same performance statistics used in Section 3.4.1 were computed and the

results compared with those of the SIFT based classifier.

23

3.7 The Proposed Algorithm

The algorithm used can be summarised as follows:

(i) Given the set of known signatures and test signatures signed in a document, scan and crop

each class of knowns and its respective test signatures and save them as portable network

graphic (PNG) format.

(ii) For each signature in the class of known signatures sayA, B, C and test signatureT, perform

SIFT extraction as described in Subsection 3.3.2.

(iii) For each pair of known signaturesA,B, Let Ai be theith keypoint in signatureA andBj

be thejth keypoint in signatureB. Calculate Euclidean distance D(Ai,Bj) and the distance

D(Ai,B), the average distance from theith keypoint in signatureA to all keypoints of signa-

tureB

(iv) Calculate image distanceD(A,B) as shown in Equation 3.1.

(v) Create the template of known signatures class consisting of writer ID, distance parameters

and intra - class thresholds.

(vi) For a given test signatureT claimed to be of a known writer, Calculate the inter- class

distances betweenT and each signature in the class of knowns in the template. Get the inter-

class thresholds.

(vii) Compare the intra - class thresholds in the template with inter- class thresholds using condi-

tions set in Subsection 3.4.1.

(viii) Test the performance of the classifier using the performance statistics described in Section

3.5.

24

Chapter 4

RESULTS

4.1 Introduction

To measure the accuracy of the SIFT based verifier, a set consisting of genuine signatures and

forged signatures was used. In total 90 signatures were used. The training set had 54 genuine

signatures for creating the known signature templates. A test set consisted of a total of 36 signatures

(18 genuine signatures and 18 forged signatures). For each class of known signatures containing

three sample signatures, a genuine and a forged signature were tested independently. The overall

performance of the SIFT based classifier was measured in terms of the number of genuine and

forged signatures it can correctly classify in the test set.

4.2 Examples of Verified Signatures

In this Section we present examples of verified signatures. Figure 4.1 shows signatures 16.png,

17.png and 18.png from the same known writer(same class) and were used as the training set for

this class to create a template. The signatures 19.png in Figure 4.2 was the test signature. Using

all the five tests described in Subsection 3.4.2, signature 19.png was correctly identified as gen-

uine. Table 4.1 shows the image distances between the set of known signatures 16.png, 17.png

and 18.png. The intra class maximum,max (D(16, 17),D(17, 18),D(16, 18)) = 1.1710 is greater

than the inter class maximummax (D(16, 19),D(17, 19),D(18, 19)) = 1.0700. The intra class

average,avg (D(16, 17),D(17, 18),D(16, 18)) = 1.1293 is greater than the inter class average

25

avg (D(16, 19),D(17, 19),D(18, 19)) = 1.0497, the intra class range on maximumm intra class

distances is1.2210 is also greater than inter class maximummax (D(16, 19),D(17, 19),D(18, 19))

= 1.0700. The intra-class minimummin (D(16, 17),D(17, 18),D(16, 18)) = 1.1069 is greater

than inter class minimum distance which is1.0382.

Also the range on minimum,min (D(16, 17),D(17, 18),D(16, 18))- 0.05= 1.0569 is also greater

than inter class minimum. Hence based on all the tests signature 19.png is correctly classified

as genuine. Table 4.2 shows the inter- class distances between the test signature 19.png and the

template of knowns.

Figure 4.1: Example 1 of genuine signatures of a known writer.

Figure 4.2: Test signature correctly classfied as genuine by all the tests.

26

Table 4.1: Image distances set of known signatures 16.png, 17.png and 18.png.
Signatures Distance Image

description distance
16.png,18.png D(16,18) 1.1069
17.png,18.png D(17,18) 1.1710
16.png,17.png D(16,17) 1.1099

Table 4.2: Image distances between test signature 19.png and set of known signatures.
Signatures Distance Image

description distance
16.png,19.png D(16,19) 1.0411
17.png,19.png D(17,19) 1.0700
18.png,19.png D(18,19) 1.0382

Figure 4.3 shows signatures 41.png, 42.png and 43.png from the same known writer and were

used as the training set for this class to create a template. Using this template, signature 45.png

shown in Figure 4.4 was correctly classified as a forgery by all the tests. Table 4.3 shows the intra

- class distances between signatures 41.png, 42.png and 43.png. Table 4.4 shows the inter - class

distances between known signatures 41.png, 42.png, 43.png and test signature 45.png.

Figure 4.3: Example 2 of genuine signatures of a known writer.

27

Figure 4.4: Test signature correctly classfied as forgery by all the tests.

Table 4.3: Image distances set of known signatures 41.png, 42.png and 43.png.
Signatures Distance Image

description distance
41.png,42.png D(41,42) 1.0538
41.png,43.png D(41,43) 1.0538
42.png,43.png D(42,43) 1.1028

Table 4.4: Image distances between test signature 45.png and set of knowns 41.png, 42.png and
43.png.

Signatures Distance Image
description distance

41.png,45.png D(41,45) 1.2012
42.png,45.png D(42,45) 1.3967
43.png,45.png D(43,45) 1.0539

4.3 Results from the Proposed Method

MATLAB scripts were used to detect false positives, true positives, true negatives, true positives

and to calculate the sensitivity and the specificity. Sensitivity is proportion of genuine signatures

the classifier is able to correctly identify as genuine from the test set and the specificity is the

proportion of the forgeries the classifier is able to correctly classify as forgeries from the test set.

The following statistics were obtained.

28

4.3.1 Maximum Distance

The specificity of 38.89% was obtained; which is the proportion of forgeries the classifier was able

to identify from the testing set and the sensitivity of 77.78% was also obtained; which is the pro-

portion of genuine signatures the classifier was able to correctly identify after using the condition

set in Equation 3.2, that is comparing the maximum intra-class distance with maximum inter-class

distance. This means the comparison between the maximum intra - class distance and maximum

inter - class distance was better in identifying genuine signatures than in detecting forgeries. Table

4.5 shows the performance statistics obtained by the classifier using maximum class distances.

Table 4.5: Performance statistics obtained by the classifier using maximum class distances.
TP 14 FP 11
TN 7 FN 4

4.3.2 Average Distance

Using the condition set in Equation 3.3, that is comparing the average intra-class distance with

average inter-class distance. The specificity of 50% was obtained, which is the proportion of

forged signatures correctly identified from the test set and the sensitivity of 44.444% was also

obtained, that is the proportion of genuine signatures correctly identified. From these performance

statistics it shows the average test was poor and random in both detecting the forged signatures

and identifying the genuine signatures. Table 4.6 shows the performance statistics obtained by the

classifier using average class distances.

Table 4.6: Performance statistics obtained by the classifier using average class distances.
TP 8 FP 9
TN 9 FN 10

4.3.3 Minimum Distance

The specificity of 38.889% and the sensitivity of 44.444% were obtained after using the condition

set in Equation 3.4, that is comparing the minimum intra-class distance with minimum inter-class

29

distance. Similar to the average test, the minimum distance test performed poorly in both detecting

the forged signatures and identifying the genuine signatures. Table 4.7 shows the performance

statistics obtained by the classifier using minimum class distances.

Table 4.7: Performance statistics obtained by the classifier using minimum class distances.
TP 7 FP 10
TN 8 FN 11

4.3.4 Range of±0.05 on Maximum Distance

The specificity of 33.3% and the sensitivity of 88.8% were obtained after using the condition set

in Equation 3.5, that is a range of 0.05 on the maximum intra-class distance and setting it as a

threshold and comparing it with the maximum inter-class distance. This test was the best in terms

of sensitivity i.e. was able to correctly classify highest number of genuine signatures from the

test set and the poorest in terms of specificity i.e. identifying forged signatures. Table 4.8 shows

the performance statistics obtained by the classifier using the range test on maximum intra class

distance.

Table 4.8: Performance statistics obtained by the classifier using the range test on maximum class
distances.

TP 16 FP 15
TN 3 FN 2

4.3.5 Range of±0.05 on Minimum Distance

The specificity of 72.2% and the sensitivity of 50% were obtained after using the condition set

in Equation 3.6, that is a range of 0.05 on the minimum intra-class distance and setting it as

a threshold and comparing it with the minimum inter-class distance. This test was the best in

identifying the forged signatures from the test set. Table 4.9 shows the performance statistics

obtained by the classifier using the range test on minimum intra class distance .

30

Table 4.9: Performance statistics obtained by the classifier using the range test on minimum class
distances.

TP 9 FP 5
TN 13 FN 9

4.3.6 Range of±0.05 on Maximum Distance and Range of±0.05 on Mini-
mum Distance

The specificity of 55.5% and the sensitivity of 77.78% were obtained after using the condition

set in Equation 3.7, that is a a range of 0.05 on both the minimum and maximum intra-class

distances and setting them as a threshold. Table 4.10 shows the performance statistics obtained

by the classifier using the range on both minimum and maximum intra-class distances. A good

classifier should have high rates of both specificity and sensitivity. It should be able to correctly

classify high proportion of genuine signatures from the test set and also detect high proportion

of forged signatures as forgeries in the same test set. From the performance statistics, this test

compared to the rest had high rates on both specificity and sensitivity and was considered for

comparison with human experts.

Table 4.10: Performance statistics obtained by the classifier using the range test on both minimum
and maximum class distances.

TP 14 FP 8
TN 10 FN 4

4.4 Results from Human Experts

The first human expert is a loan officer and an accountant with Holistic Services Uganda (HOSU)

which local Non-Governmental Organisation. The first human expert obtained a sensitivity of

56.566% and specificity of 61.1 %. The performance statistics obtained by the first expert are

shown in Table 4.11.

31

Table 4.11: Performance statistics obtained by the first human expert.
TP 10 FP 7
TN 11 FN 8

The second human expert is a banker with bank of Baroda Uganda. The second human expert

obtained a sensitivity of 72.22% and specificity of 77.7 %. Table 4.12 shows the performance

statistics obtained by the second human expert.

Table 4.12: Performance statistics obtained by the second human expert.
TP 13 FP 4
TN 14 FN 5

The third human expert is a also a banker with Stanbic bank Uganda. The third human expert

obtained a sensitivity of 66.6% and specificity of 72.2 %. Table 4.13 shows the performance

statistics obtained by the third human expert.

Table 4.13: Performance statistics obtained by the third human expert.
TP 12 FP 5
TN 13 FN 6

The fourth expert is forensic accountant with VAS consultants Ltd, which is a regional manage-

ment consultancy. The fourth human expert obtained a sensitivity of 94.4% and specificity of 77.7

%.Table 4.14 shows the performance statistics obtained by the fourth human expert.

32

Table 4.14: Performance statistics obtained by the fourth human expert.
TP 17 FP 4
TN 14 FN 1

On average the human experts obtained a sensitivity of 72.445% and specificity of 72.175 %. Table

4.15 shows the summary of performance statistics obtained by the human experts.

Table 4.15: Summary of performance statistics obtained by the human experts.
Human Experts 1 2 3 4 Average
Sensitivity 56.56 72.22 66.6 94.4 72.445
Specificity 61.1 77.1 72.2 77.7 72.175

4.5 Comparison of Human Experts and Proposed Algorithm

The SIFT based classifier performed better in identifying genuine signatures compared to the aver-

age of human experts and was out performed in identifying forgeries by the human experts. SIFT

tests were poor on average in specificity. Table 4.16 shows the sensitivity and specificity obtained

by the human experts and the best of the SIFT method. The variation in performance statistics

among the human expert was attributed to the diffrence in their working environments in terms of

the kind of clients they deal with and physiological factors.

Table 4.16: Comparison of sensitivity and specificity obtained by the human experts and the pro-
posed SIFT method.

Perfomance Statistic Average of Human Experts SIFT method
Senstivity 72.445 77.78
Specificity 72.175 55.5

33

Chapter 5

CONCLUSIONS AND AREAS OF
FURTHER RESEARCH

5.1 Conclusions

The objective of this project was mainly to offer an efficient and economically viable offline hand-

written signature verifier. In order to meet the objective various existing methods of offline hand-

written signature verification were reviewed and SIFT features were decided as robust image de-

scriptors. A database of signatures was collected consisting of known writers’ signatures and forg-

eries. The efficiency of the verifier was tested and specificity and the sensitivity were measured

for each test taken. It was noted that some writers have large discrepancies between three of their

sample signatures such that even a forgery may fall within the intra class distances which may

result to a false negative notification this might have been caused by physiological factors. A good

classifier should have high rates of specificity and sensitivity. To be able to have an efficient classi-

fier we picked the test that had high rates of both specificity and sensitivity. The optimal condition

was given by Equation 3.7 that is, using a range of 0.05 on both the minimum intra-class distance

and minimum intra-class distance as a threshold such that the minimum and maximum inter- class

distance should lie within that range. Though originally designed for object recognition, the use of

SIFT features for signature verification had not been systematically investigated before. The per-

formance stastistics obtained from this test showed that SIFT features can be used with Euclidean

distances for offline handwritten verification. Although this research is a good start to SIFT based

handwritten signature verification it can be extended to evaluate other image similarity measures.

34

5.2 Areas of Further Research

The problem of handwritten signature verification was addressed from an offline point of view in

the experiments. Many areas of study related to SIFT features and various distance measures are

still open.

5.2.1 Alternative Distance Measures

Use of SIFT features as signature descriptors and other distance measures could be interesting.

Chernoff-Bhattacharya distance, has been successfully used to measure discrminability in hand-

written numeral recognition [36] could be evaluated in HSV problems.

Mahalanobis distance is another measure that can be used to find patterns in SIFT features . Unlike

the Euclidean distance that uses the mean vector, Mahalanobis distance uses both the mean vector

and the full covariance matrix which can an efficient measure of variability among signatures. If

the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the Euclidean

distance. Detailed explanations of the Chernoff-Bhattacharya distance and Mahalanobis distance

can be found in Chapter 6 of [37]. The experiments can also be extended to combine two or more

of these distance measures and compare their efficiency.

5.2.2 SIFT Features and Online Handwritten Signature Verification

Since online handwritten signature verification problems involves descriptors like velocity, accel-

eration and capture time of each point on the signature trajectory. Future work could evaluate

inclusion of SIFT features as image descriptors and various distance measures discussed above in

online handwritten signature verification problems.

35

Chapter 6

APPENDICES

6.1 Appendix A

Here we outline various MATLAB scripts and functions that were used in this project.

6.1.1 MATLAB Functions

+++

This function reads a signature image from file and converts it to grayscale.

function S = imreadbw(file)

S=im2double(imread(file));

if(size(S,3) > 1)

S = rgb2gray(S);

end

36

+++

This function resizes the displayed images .

function resizeImageFig(h, sz, frac)

if (nargin <3)

frac = 1;

end

pos = get(h, ’Position’);

set(h, ’Units’, ’pixels’, ’Position’, ...

[pos(1), pos(2)+pos(4)-frac*sz(1), ...

frac*sz(2), frac*sz(1)]);

set(gca,’Position’, [0 0 1 1], ’Visible’, ’off’);

+++

Calculates the intra-class Euclidean distances and the intra-class thresholds.

function[D13,D23,D12,AGD12,AGD13,AGD23,

intraMin,intraMax,intraAvg,maxRange,minRange]

= intraclassEuclidean(desc1,desc2,desc3)

for i = 1:size(desc1,1)

D12 = sqrt(sum((desc2 - repmat(desc1(i,:),size(desc2,1),1)).ˆ2,2));

D13 = sqrt(sum((desc3 - repmat(desc1(i,:),size(desc3,1),1)).ˆ2,2));

end

for i = 1:size(desc2,1)

D23 = sqrt(sum((desc3 - repmat(desc2(i,:),size(desc3,1),1)).ˆ2,2));

AGD12=sum(D12)/size(desc2,1);

AGD13=sum(D13)/size(desc3,1);

AGD23=sum(D23)/size(desc3,1);

d=[AGD12,AGD13,AGD23];

intraMin=min(d);

intraMax=max(d);

intraAvg=sum(d)/3;

maxRange=intraMax + 0.05;

37

minRange=intraMin -0.05;

end

end

++

calculates the inter-class Euclidean distances and the inter-class thresholds

This are the distances between the claimed signature and the template of the known writer.

function [D41,D42,D43,AGD41,AGD42,AGD43,interMin,interMax,interAvg]

=interclassEuclidean(desc1,desc2,desc3,desc4)

for i = 1:size(desc4,1)

D41 = sqrt(sum((desc1 - repmat(desc4(i,:),size(desc1,1),1)).ˆ2,2));

D42 = sqrt(sum((desc2 - repmat(desc4(i,:),size(desc2,1),1)).ˆ2,2));

D43 = sqrt(sum((desc3 - repmat(desc4(i,:),size(desc3,1),1)).ˆ2,2));

AGD41=sum(D41)/size(desc4,1);

AGD42=sum(D42)/size(desc4,1);

AGD43=sum(D43)/size(desc4,1);

d=[AGD41,AGD42,AGD43];

interMin=min(d);

interMax=max(d);

interAvg=sum(d)/3;

end

+++

38

6.1.2 MATLAB Scripts

In this part we explore the scripts used in the project. The scripts have inline comments for ease of

reference.

ENROLsignature.m

This script conducts the signature enrolment stage. It calls the functions that extracts the SIFT

features of the three samples of the known writer signatures, calculate the Euclidean distances and

the intra-class thresholds. The output is stored as a matlab file (template) which contain individual

keypoint of each the signatures, the Eucledian distances between the individual keypoints, the

distance between images and the intra-class thresholds.

clear;

close all;

global EvansSigMsc;

Signa_path = [EvansSigMsc ’E:\SIGNATURE_EVANS’];

addpath(Signa_path);

im_path = [Signa_path,’/Signatures/’];

keypoint_path = [Signa_path,’/KEYPOINTS/’];

octaves = 4;

intervals = 2;

cache = 1;

im_name1= input(’Please enter the ID of

known writer first signature \n’,’s’);

im1=im2double(imreadbw([im_path,im_name1,’.png’])) ;

im_name2= input(’Please enter the ID of

known writer second signature \n’,’s’);

im2=im2double(imreadbw([im_path,im_name2,’.png’])) ;

im_name3= input(’Please enter the ID of

known writer third signature \n’,’s’);

im3=im2double(imreadbw([im_path,im_name3,’.png’])) ;

fprintf(2, ’Extracting SIFT descriptors(keypoints) for the

known writer signatures.\n’)

[pos1, scale1, orient1, desc1] = SIFT(im1, octaves, intervals,

ones(size(im1)), 0.02, 10.0, 1);

39

[pos2, scale2, orient2, desc2] = SIFT(im2, octaves, intervals,

ones(size(im2)), 0.02, 10.0, 1);

[pos3, scale3, orient3, desc3] = SIFT(im3, octaves, intervals,

ones(size(im3)), 0.02, 10.0, 1);

fprintf(2, ’Calculating Euclidean distances between keypoints

and intra-class threshold.\n’)

[[D13,D23,D12,AGD12,AGD13,AGD23,intraMin,

intraMax,intraAvg,maxRange,minRange]

= intraclassEuclidean(desc1,desc2,desc3);

fprintf(2, ’Saving a template for known writer signatures.\n’);

key_name1= ([im_name1,im_name2,im_name3]);

fname1=([keypoint_path,key_name1]) ;

save([fname1,’.key.mat’]);

++

These scripts does the signature verification stage. When a signature claimed to be of a known

signer is presented , its SIFT descriptors are extracted. A MATLAB template containing descrip-

tors of the known signatures is loaded and the distance measures between its parameters and those

of the claimed signatures are calculated . The intra-class and inter - class thresholds are compared

to ascertain whether its genuine or not .

VERIFYsignatureUSINGMAX.m

This script uses the maximum intra - class distance as the threshold.

clear;

close all;

global EvansSigMsc;

Signa_path = [EvansSigMsc ’E:\SIGNATURE_EVANS’];

addpath(Signa_path);

im_path = [Signa_path,’/Signatures/’];

keypoint_path = [Signa_path,’/KEYPOINTS/’];

octaves = 4;

intervals = 2;

cache = 1;

claimedSignature= input(’Enter the claimed signature \n’,’s’);

40

im4=im2double(imreadbw([im_path,claimedSignature,’.png’])) ;

fprintf(2, ’Computing keypoints for the claimed signatures.\n’);

[pos4,scale4,orient4,desc4]

=SIFT(im4,octaves,intervals,ones(size(im4)),0.02,10.0,2);

knowntemp= input(’Enter the KNOWN WRITER TEMPLATE \n’,’s’);

fname1=([keypoint_path,knowntemp]) ;

load([fname1,’.key.mat’]);

fprintf(2, ’RETRIEVE THE KNOWN WRITER TEMPLATE .\n’);

[D41,D42,D43,AGD41,AGD42,AGD43,interMin,interMax,interAvg]

= interclassEuclidean(desc1,desc2,desc3,desc4);

if interMax < intraMax

fprintf(2, ’THE CLAIMED SIGNATURE IS GENUINE .\n’)

elseif interMax > intraMax

fprintf(2, ’THE CLAIMED SIGNATURE IS NOT GENUINE .\n’)

end

++

VERIFYsignatureUSINGAVG.m

This script uses average intra - class distance as the threshold.

clear;

close all;

global EvansSigMsc;

Signa_path = [EvansSigMsc ’E:\SIGNATURE_EVANS’];

addpath(Signa_path);

im_path = [Signa_path,’/Signatures/’];

keypoint_path = [Signa_path,’/KEYPOINTS/’];

octaves = 4;

intervals = 2;

cache = 1;

claimedSignature= input(’Enter the claimed signature \n’,’s’);

im4=im2double(imreadbw([im_path,claimedSignature,’.png’])) ;

fprintf(2, ’Computing keypoints for the claimed signatures.\n’);

41

[pos4, scale4, orient4, desc4]

= SIFT(im4, octaves, intervals, ones(size(im4)), 0.02, 10.0, 2);

knowntemp= input(’Enter the KNOWN WRITER TEMPLATE \n’,’s’);

fname1=([keypoint_path,knowntemp]) ;

load([fname1,’.key.mat’]);

fprintf(2, ’RETRIEVE THE KNOWN WRITER TEMPLATE .\n’);

[D41,D42,D43,AGD41,AGD42,AGD43,interMin,interMax,interAvg]

= interclassEuclidean(desc1,desc2,desc3,desc4);

if interAvg < intraAvg

fprintf(2, ’THE CLAIMED SIGNATURE IS GENUINE .\n’)

elseif interAvg > intraAvg

fprintf(2, ’THE CLAIMED SIGNATURE IS NOT GENUINE .\n’)

end

++

VERIFYsignatureUSINGMIN.m

This script uses minimum intra - class distance as the threshold.

clear;

close all;

global EvansSigMsc;

Signa_path = [EvansSigMsc ’E:\SIGNATURE_EVANS’];

addpath(Signa_path);

im_path = [Signa_path,’/Signatures/’];

keypoint_path = [Signa_path,’/KEYPOINTS/’];

octaves = 4;

intervals = 2;

cache = 1;

claimedSignature= input(’Enter the claimed signature \n’,’s’);

im4=im2double(imreadbw([im_path,claimedSignature,’.png’])) ;

fprintf(2, ’Computing keypoints for the claimed signatures.\n’);

[pos4, scale4, orient4, desc4]

= SIFT(im4, octaves, intervals, ones(size(im4)), 0.02, 10.0, 2);

knowntemp= input(’Enter the KNOWN WRITER TEMPLATE \n’,’s’);

42

fname1=([keypoint_path,knowntemp]) ;

load([fname1,’.key.mat’]);

fprintf(2, ’RETRIEVE THE KNOWN WRITER TEMPLATE .\n’);

[D41,D42,D43,AGD41,AGD42,AGD43,interMin,interMax,interAvg]

= interclassEuclidean(desc1,desc2,desc3,desc4);

if interMax <= maxRange

fprintf(2, ’THE CLAIMED SIGNATURE IS GENUINE .\n’)

elseif interMax => maxRange

fprintf(2, ’THE CLAIMED SIGNATURE IS NOT GENUINE .\n’)

end

++

VERIFYsignatureUSINGmaxRANGE.m

This script adds a distance of 0.05 above maximumm intra - class distance and use this as the

threshold.

clear;

close all;

global EvansSigMsc;

Signa_path = [EvansSigMsc ’E:\SIGNATURE_EVANS’];

addpath(Signa_path);

im_path = [Signa_path,’/Signatures/’];

keypoint_path = [Signa_path,’/KEYPOINTS/’];

octaves = 4;

intervals = 2;

cache = 1;

claimedSignature= input(’Enter the claimed signature \n’,’s’);

im4=im2double(imreadbw([im_path,claimedSignature,’.png’])) ;

fprintf(2, ’Computing keypoints for the claimed signatures.\n’);

[pos4, scale4, orient4, desc4]

= SIFT(im4, octaves, intervals, ones(size(im4)), 0.02, 10.0, 2);

knowntemp= input(’Enter the KNOWN WRITER TEMPLATE \n’,’s’);

fname1=([keypoint_path,knowntemp]) ;

load([fname1,’.key.mat’]);

43

fprintf(2, ’RETRIEVE THE KNOWN WRITER TEMPLATE .\n’);

[D41,D42,D43,AGD41,AGD42,AGD43,interMin,interMax,interAvg]

= interclassEuclidean(desc1,desc2,desc3,desc4);

if interMax <= maxRange

fprintf(2, ’THE CLAIMED SIGNATURE IS GENUINE .\n’)

elseif interMax => maxRange

fprintf(2, ’THE CLAIMED SIGNATURE IS NOT GENUINE .\n’)

end

++

VERIFYsignatureUSINGminRANGE.m

This script substracts a distance of 0.05 from the minimum intra - class distance and use this as the

threshold.

clear;

close all;

global EvansSigMsc;

Signa_path = [EvansSigMsc ’E:\SIGNATURE_EVANS’];

addpath(Signa_path);

im_path = [Signa_path,’/Signatures/’];

keypoint_path = [Signa_path,’/KEYPOINTS/’];

octaves = 4;

intervals = 2;

cache = 1;

claimedSignature= input(’Enter the claimed signature \n’,’s’);

im4=im2double(imreadbw([im_path,claimedSignature,’.png’])) ;

fprintf(2, ’Computing keypoints for the claimed signatures.\n’);

[pos4, scale4, orient4, desc4] =

SIFT(im4, octaves, intervals, ones(size(im4)), 0.02, 10.0, 2);

knowntemp= input(’Enter the KNOWN WRITER TEMPLATE \n’,’s’);

fname1=([keypoint_path,knowntemp]) ;

load([fname1,’.key.mat’]);

fprintf(2, ’RETRIEVE THE KNOWN WRITER TEMPLATE .\n’);

44

[D41,D42,D43,AGD41,AGD42,AGD43,interMin,interMax,interAvg]

= interclassEuclidean(desc1,desc2,desc3,desc4);

if interMin <= minRange

fprintf(2, ’THE CLAIMED SIGNATURE IS GENUINE .\n’)

elseif interMin = > minRange

fprintf(2, ’THE CLAIMED SIGNATURE IS NOT GENUINE .\n’)

end

++

CREATETtesttemplate.m

This script loads all the images used for testing the accuracy of the verifier. It calls the functions

to extract SIFT descriptors of the signature, calculates the distances , the class thresholds and the

outlier detection.

All these parameters are stored as a matlab file that will be used to measure the accuracy of the

verifier.

clear;

close all;

global EvansSigMsc;

Signa_path = [EvansSigMsc ’E:/SIGNATUREEVANS’];

addpath(Signa_path);

im_path = [Signa_path,’/Signatures/TESTSET/’];

keypoint_path = [Signa_path,’/KEYPOINTS/TESTKEYSET/’];

octaves = 4;

intervals = 2;

cache = 1;

% Load the test signatures.

% Extract their SIFT features

%calculate the Euclidean distances between the featuressig1=im2double(imreadbw([i

[pos1, scale1, orient1, desc1]

= SIFT(sig1, octaves, intervals, ones(size(sig1)), 0.02, 10.0, 1);

sig2=im2double(imreadbw([im_path,’2.png’])) ;

[pos2, scale2, orient2, desc2]

45

= SIFT(sig2, octaves, intervals, ones(size(sig2)), 0.02, 10.0, 1);

sig3=im2double(imreadbw([im_path,’3.png’])) ;

[pos3, scale3, orient3, desc3]

= SIFT(sig3, octaves, intervals, ones(size(sig3)), 0.02, 10.0, 1);

sig4=im2double(imreadbw([im_path,’4.png’])) ;

[pos4, scale4, orient4, desc4]

= SIFT(sig4, octaves, intervals, ones(size(sig4)), 0.02, 10.0, 1);

sig5=im2double(imreadbw([im_path,’5.png’])) ;

[pos5, scale5, orient5, desc5]

= SIFT(sig5, octaves, intervals, ones(size(sig5)), 0.02, 10.0, 1);

sig6=im2double(imreadbw([im_path,’6.png’])) ;

[pos6, scale6, orient6, desc6] =

SIFT(sig6, octaves, intervals, ones(size(sig6)), 0.02, 10.0, 1);

sig7=im2double(imreadbw([im_path,’7.png’])) ;

[pos7, scale7, orient7, desc7] =

SIFT(sig7, octaves, intervals, ones(size(sig7)), 0.02, 10.0, 1);

sig8=im2double(imreadbw([im_path,’8.png’])) ;

[pos8, scale8, orient8, desc8] =

SIFT(sig8, octaves, intervals, ones(size(sig8)), 0.02, 10.0, 1);

sig9=im2double(imreadbw([im_path,’9.png’])) ;

[pos9, scale9, orient9, desc9] =

SIFT(sig9, octaves, intervals, ones(size(sig9)), 0.02, 10.0, 1);

sig10=im2double(imreadbw([im_path,’10.png’])) ;

[pos10, scale10, orient10, desc10] =

SIFT(sig10, octaves, intervals, ones(size(sig10)), 0.02, 10.0, 1);

sig11=im2double(imreadbw([im_path,’11.png’])) ;

[pos11, scale11, orient11, desc11] =

SIFT(sig11, octaves, intervals, ones(size(sig11)), 0.02, 10.0, 1);

sig12=im2double(imreadbw([im_path,’12.png’])) ;

[pos12, scale12, orient12, desc12] =

46

SIFT(sig12, octaves, intervals, ones(size(sig12)), 0.02, 10.0, 1);

sig13=im2double(imreadbw([im_path,’13.

png’])) ;

[pos13, scale13, orient13, desc13]

= SIFT(sig13, octaves, intervals, ones(size(sig13)), 0.02, 10.0, 1);

sig14=im2double(imreadbw([im_path,’14.png’])) ;

[pos14, scale14, orient14, desc14]

= SIFT(sig14, octaves, intervals, ones(size(sig14)), 0.02, 10.0, 1);

sig15=im2double(imreadbw([im_path,’15.png’])) ;

[pos15, scale15, orient15, desc15]

= SIFT(sig15, octaves, intervals, ones(size(sig15)), 0.02, 10.0, 1);

sig16=im2double(imreadbw([im_path,’16.png’])) ;

[pos16, scale16, orient16, desc16]

= SIFT(sig16, octaves, intervals, ones(size(sig16)), 0.02, 10.0, 1);

sig17=im2double(imreadbw([im_path,’17.png’])) ;

[pos17, scale17, orient17, desc17]

= SIFT(sig17, octaves, intervals, ones(size(sig17)), 0.02, 10.0, 1);

sig18=im2double(imreadbw([im_path,’18.png’])) ;

[pos18, scale18, orient18, desc18]

= SIFT(sig18, octaves, intervals, ones(size(sig18)), 0.02, 10.0, 1);

sig19=im2double(imreadbw([im_path,’19.png’])) ;

[pos19, scale19, orient19, desc19]

= SIFT(sig19, octaves, intervals, ones(size(sig19)), 0.02, 10.0, 1);

sig20=im2double(imreadbw([im_path,’20.png’])) ;

[pos20, scale20, orient20, desc20]

= SIFT(sig20, octaves, intervals, ones(size(sig20)), 0.02, 10.0, 1);

sig21=im2double(imreadbw([im_path,’21.png’])) ;

[pos21, scale21, orient21, desc21]

47

= SIFT(sig21, octaves, intervals, ones(size(sig21)), 0.02, 10.0, 1);

sig22=im2double(imreadbw([im_path,’22.png’])) ;

[pos22, scale22, orient22, desc22]

= SIFT(sig22, octaves, intervals, ones(size(sig22)), 0.02, 10.0, 1);

sig23=im2double(imreadbw([im_path,’23.png’])) ;

[pos23, scale23, orient23, desc23]

= SIFT(sig23, octaves, intervals, ones(size(sig23)), 0.02, 10.0, 1);

sig24=im2double(imreadbw([im_path,’24.png’])) ;

[pos24, scale24, orient24, desc24]

= SIFT(sig24, octaves, intervals, ones(size(sig24)), 0.02, 10.0, 1);

sig25=im2double(imreadbw([im_path,’25.png’])) ;

[pos25, scale25, orient25, desc25]

= SIFT(sig25, octaves, intervals, ones(size(sig25)), 0.02, 10.0, 1);

sig26=im2double(imreadbw([im_path,’26.png’])) ;

[pos26, scale26, orient26, desc26]

= SIFT(sig26, octaves, intervals, ones(size(sig26)), 0.02, 10.0, 1);

sig27=im2double(imreadbw([im_path,’27.png’])) ;

[pos27, scale27, orient27, desc27]

= SIFT(sig27, octaves, intervals, ones(size(sig27)), 0.02, 10.0, 1);

sig28=im2double(imreadbw([im_path,’28.png’])) ;

[pos28, scale28, orient28, desc28]

= SIFT(sig28, octaves, intervals, ones(size(sig28)), 0.02, 10.0, 1);

sig29=im2double(imreadbw([im_path,’29.png’])) ;

[pos29, scale29, orient29, desc29]

48

= SIFT(sig29, octaves, intervals, ones(size(sig29)), 0.02, 10.0, 1);

sig30=im2double(imreadbw([im_path,’30.png’])) ;

[pos30, scale30, orient30, desc30]

= SIFT(sig30, octaves, intervals, ones(size(sig30)), 0.02, 10.0, 1);

sig31=im2double(imreadbw([im_path,’31.png’])) ;

[pos31, scale31, orient31, desc31]

= SIFT(sig31, octaves, intervals, ones(size(sig31)), 0.02, 10.0, 1);

sig32=im2double(imreadbw([im_path,’32.png’])) ;

[pos32, scale32, orient32, desc32]

= SIFT(sig32, octaves, intervals, ones(size(sig32)), 0.02, 10.0, 1);

sig33=im2double(imreadbw([im_path,’33.png’])) ;

[pos33, scale33, orient33, desc33]

= SIFT(sig33, octaves, intervals, ones(size(sig33)), 0.02, 10.0, 1);

sig34=im2double(imreadbw([im_path,’34.png’])) ;

[pos34, scale34, orient34, desc34]

= SIFT(sig34, octaves, intervals, ones(size(sig34)), 0.02, 10.0, 1);

sig35=im2double(imreadbw([im_path,’35.png’])) ;

[pos35, scale35, orient35, desc35]

= SIFT(sig35, octaves, intervals, ones(size(sig35)), 0.02, 10.0, 1);

sig36=im2double(imreadbw([im_path,’36.png’])) ;

[pos36, scale36, orient36, desc36]

= SIFT(sig36, octaves, intervals, ones(size(sig36)), 0.02, 10.0, 1);

sig37=im2double(imreadbw([im_path,’37.png’])) ;

[pos37, scale37, orient37, desc37]

= SIFT(sig37, octaves, intervals, ones(size(sig37)), 0.02, 10.0, 1);

49

sig38=im2double(imreadbw([im_path,’38.png’])) ;

[pos38, scale38, orient38, desc38]

= SIFT(sig38, octaves, intervals, ones(size(sig38)), 0.02, 10.0, 1);

sig39=im2double(imreadbw([im_path,’39.png’])) ;

[pos39, scale39, orient39, desc39]

= SIFT(sig39, octaves, intervals, ones(size(sig39)), 0.02, 10.0, 1);

sig40=im2double(imreadbw([im_path,’40.png’])) ;

[pos40, scale40, orient40, desc40]

= SIFT(sig40, octaves, intervals, ones(size(sig40)), 0.02, 10.0, 1);

sig41=im2double(imreadbw([im_path,’41.png’])) ;

[pos41, scale41, orient41, desc41]

= SIFT(sig41, octaves, intervals, ones(size(sig41)), 0.02, 10.0, 1);

sig42=im2double(imreadbw([im_path,’42.png’])) ;

[pos42, scale42, orient42, desc42]

= SIFT(sig42, octaves, intervals, ones(size(sig42)), 0.02, 10.0, 1);

sig43=im2double(imreadbw([im_path,’43.png’])) ;

[pos43, scale43, orient43, desc43]

= SIFT(sig43, octaves, intervals, ones(size(sig43)), 0.02, 10.0, 1);

sig44=im2double(imreadbw([im_path,’44.png’])) ;

[pos44, scale44, orient44, desc44]

= SIFT(sig44, octaves, intervals, ones(size(sig44)), 0.02, 10.0, 1);

sig45=im2double(imreadbw([im_path,’45.png’])) ;

[pos45, scale45, orient45, desc45]

= SIFT(sig45, octaves, intervals, ones(size(sig45)), 0.02, 10.0, 1);

sig46=im2double(imreadbw([im_path,’46.png’])) ;

50

[pos46, scale46, orient46, desc46] =

SIFT(sig46, octaves, intervals, ones(size(sig46)), 0.02, 10.0, 1);

sig47=im2double(imreadbw([im_path,’47.png’])) ;

[pos47, scale47, orient47, desc47]

= SIFT(sig47, octaves, intervals, ones(size(sig47)), 0.02, 10.0, 1);

sig48=im2double(imreadbw([im_path,’48.png’])) ;

[pos48, scale48, orient48, desc48]

= SIFT(sig48, octaves, intervals, ones(size(sig48)), 0.02, 10.0, 1);

sig49=im2double(imreadbw([im_path,’49.png’])) ;

[pos49, scale49, orient49, desc49]

= SIFT(sig49, octaves, intervals, ones(size(sig49)), 0.02, 10.0, 1);

sig50=im2double(imreadbw([im_path,’50.png’])) ;

[pos50, scale50, orient50, desc50]

= SIFT(sig50, octaves, intervals, ones(size(sig50)), 0.02, 10.0, 1);

sig51=im2double(imreadbw([im_path,’51.png’])) ;

[pos51, scale51, orient51, desc51]

= SIFT(sig51, octaves, intervals, ones(size(sig51)), 0.02, 10.0, 1);

sig52=im2double(imreadbw([im_path,’

52.png’])) ;

[pos52, scale52, orient52, desc52]

= SIFT(sig52, octaves, intervals, ones(size(sig52)), 0.02, 10.0, 1);

sig53=im2double(imreadbw([im_path,’53.png’])) ;

[pos53, scale53, orient53, desc53]

= SIFT(sig53, octaves, intervals, ones(size(sig53)), 0.02, 10.0, 1);

sig54=im2double(imreadbw([im_path,’54.png’])) ;

[pos54, scale54, orient54, desc54]

51

= SIFT(sig54, octaves, intervals, ones(size(sig54)), 0.02, 10.0, 1);

sig55=im2double(imreadbw([im_path,’55.png’])) ;

[pos55, scale55, orient55, desc55]

= SIFT(sig55, octaves, intervals, ones(size(sig55)), 0.02, 10.0, 1);

sig56=im2double(imreadbw([im_path,’56.png’])) ;

[pos56, scale56, orient56, desc56]

= SIFT(sig56, octaves, intervals, ones(size(sig56)), 0.02, 10.0, 1);

sig57=im2double(imreadbw([im_path,’57.png’])) ;

[pos57, scale57, orient57, desc57]

= SIFT(sig57, octaves, intervals, ones(size(sig57)), 0.02, 10.0, 1);

sig58=im2double(imreadbw([im_path,’58.png’])) ;

[pos58, scale58, orient58, desc58]

= SIFT(sig58, octaves, intervals, ones(size(sig58)), 0.02, 10.0, 1);

sig59=im2double(imreadbw([im_path,’59.png’])) ;

[pos59, scale59, orient59, desc59]

= SIFT(sig59, octaves, intervals, ones(size(sig59)), 0.02, 10.0, 1);

sig60=im2double(imreadbw([im_path,’60.png’])) ;

[pos60, scale60, orient60, desc60]

= SIFT(sig60, octaves, intervals, ones(size(sig60)), 0.02, 10.0, 1);

sig61=im2double(imreadbw([im_path,’61.png’])) ;

[pos61, scale61, orient61, desc61]

= SIFT(sig61, octaves, intervals, ones(size(sig61)), 0.02, 10.0, 1);

sig62=im2double(imreadbw([im_path,’62.png’])) ;

[pos62, scale62, orient62, desc62]

= SIFT(sig62, octaves, intervals, ones(size(sig62)), 0.02, 10.0, 1);

52

sig63=im2double(imreadbw([im_path,’63.png’])) ;

[pos63, scale63, orient63, desc63]

= SIFT(sig63, octaves, intervals, ones(size(sig63)), 0.02, 10.0, 1);

sig64=im2double(imreadbw([im_path,’64.png’])) ;

[pos64, scale64, orient64, desc64]

= SIFT(sig64, octaves, intervals, ones(size(sig64)), 0.02, 10.0, 1);

sig65=im2double(imreadbw([im_path,’65.png’])) ;

[pos65, scale65, orient65, desc65] =

SIFT(sig65, octaves, intervals, ones(size(sig65)), 0.02, 10.0, 1);

sig66=im2double(imreadbw([im_path,’66.png’])) ;

[pos66, scale66, orient66, desc66]

= SIFT(sig66, octaves, intervals, ones(size(sig66)), 0.02, 10.0, 1);

sig67=im2double(imreadbw([im_path,’67.png’])) ;

[pos67, scale67, orient67, desc67]

= SIFT(sig67, octaves, intervals, ones(size(sig67)), 0.02, 10.0, 1);

sig68=im2double(imreadbw([im_path,’68.png’])) ;

[pos68, scale68, orient68, desc68]

= SIFT(sig68, octaves, intervals, ones(size(sig68)), 0.02, 10.0, 1);

sig69=im2double(imreadbw([im_path,’69.png’])) ;

[pos69, scale69, orient69, desc69]

= SIFT(sig69, octaves, intervals, ones(size(sig69)), 0.02, 10.0, 1);

sig70=im2double(imreadbw([im_path,’70.png’])) ;

[pos70, scale70, orient70, desc70]

= SIFT(sig70, octaves, intervals, ones(size(sig70)), 0.02, 10.0, 1);

sig71=im2double(imreadbw([im_path,’71.png’])) ;

53

[pos71, scale71, orient71, desc71]

= SIFT(sig71, octaves, intervals, ones(size(sig71)), 0.02, 10.0, 1);

sig72=im2double(imreadbw([im_path,’72.png’])) ;

[pos72, scale72, orient72, desc72]

= SIFT(sig72, octaves, intervals, ones(size(sig72)), 0.02, 10.0, 1);

sig73=im2double(imreadbw([im_path,’73.png’])) ;

[pos73, scale73, orient73, desc73] =

SIFT(sig73, octaves, intervals, ones(size(sig73)), 0.02, 10.0, 1);

sig74=im2double(imreadbw([im_path,’74.png’])) ;

[pos74, scale74, orient74, desc74] =

SIFT(sig74, octaves, intervals, ones(size(sig74)), 0.02, 10.0, 1);

sig75=im2double(imreadbw([im_path,’75.png’])) ;

[pos75, scale75, orient75, desc75]

= SIFT(sig75, octaves, intervals, ones(size(sig75)), 0.02, 10.0, 1);

sig76=im2double(imreadbw([im_path,’76.png’])) ;

[pos76, scale76, orient76, desc76]

= SIFT(sig76, octaves, intervals, ones(size(sig76)), 0.02, 10.0, 1);

sig77=im2double(imreadbw([im_path,’77.png’])) ;

[pos77, scale77, orient77, desc77]

= SIFT(sig77, octaves, intervals, ones(size(sig77)), 0.02, 10.0, 1);

sig78=im2double(imreadbw([im_path,’78.png’])) ;

[pos78, scale78, orient78, desc78]

= SIFT(sig78, octaves, intervals, ones(size(sig78)), 0.02, 10.0, 1);

sig79=im2double(imreadbw([im_path,’79.png’])) ;

[pos79, scale79, orient79, desc79]

= SIFT(sig79, octaves, intervals, ones(size(sig79)), 0.02, 10.0, 1);

54

sig80=im2double(imreadbw([im_path,’80.png’])) ;

[pos80, scale80, orient80, desc80]

= SIFT(sig80, octaves, intervals, ones(size(sig80)), 0.02, 10.0, 1);

sig81=im2double(imreadbw([im_path,’81.png’])) ;

[pos81, scale81, orient81, desc81]

= SIFT(sig81, octaves, intervals, ones(size(sig81)), 0.02, 10.0, 1);

sig82=im2double(imreadbw([im_path,’82.png’])) ;

[pos82, scale82, orient82, desc82]

= SIFT(sig82, octaves, intervals, ones(size(sig82)), 0.02, 10.0, 1);

sig83=im2double(imreadbw([im_path,’83.png’])) ;

[pos83, scale83, orient83, desc83]

= SIFT(sig83, octaves, intervals, ones(size(sig83)), 0.02, 10.0, 1);

sig84=im2double(imreadbw([im_path,’84.png’])) ;

[pos84, scale84, orient84, desc84]

= SIFT(sig84, octaves, intervals, ones(size(sig84)), 0.02, 10.0, 1);

sig85=im2double(imreadbw([im_path,’85.png’])) ;

[pos85, scale85, orient85, desc85]

= SIFT(sig85, octaves, intervals, ones(size(sig85)), 0.02, 10.0, 1);

sig86=im2double(imreadbw([im_path,’86.png’])) ;

[pos86, scale86, orient86, desc86]

= SIFT(sig86, octaves, intervals, ones(size(sig86)), 0.02, 10.0, 1);

sig87=im2double(imreadbw([im_path,’87.png’])) ;

[pos87, scale87, orient87, desc87]

= SIFT(sig87, octaves, intervals, ones(size(sig87)), 0.02, 10.0, 1);

sig88=im2double(imreadbw([im_path,’88.png’])) ;

55

[pos88, scale88, orient88, desc88]

= SIFT(sig88, octaves, intervals, ones(size(sig88)), 0.02, 10.0, 1);

sig89=im2double(imreadbw([im_path,’89.png’])) ;

[pos89, scale89, orient89, desc89]

= SIFT(sig89, octaves, intervals, ones(size(sig89)), 0.02, 10.0, 1);

sig90=im2double(imreadbw([im_path,’90.png’])) ;

[pos90, scale90, orient90, desc90]

= SIFT(sig90, octaves, intervals, ones(size(sig90)), 0.02, 10.0, 1);

[D13,D23,D12,AGD12,AGD13,AGD23,intraMin1,

intraMax1,intraAvg1,

maxRange1,minRange1] = intra1(desc1,desc2,desc3);

[D43,D42,D41,AGD41,AGD43,AGD42,interMin1a

,interMax1a,interAvg1a]

= inter1a(desc4, desc1,desc2,desc3);

[D53,D52,D51,AGD51,AGD53,AGD52,interMin1b

interMax1b,interAvg1b] = inter1b(desc5, desc1,desc2,desc3);

[D68,D78,D67,AGD68,AGD78,AGD67,intraMin2,

intraMax2,intraAvg2,maxRange2,minRange2]

= intra2(desc6,desc7,desc8);

[D69,D79,D89,AGD69,AGD79,AGD89,interMax2a,

interMin2a,interAvg2a]

= inter2a(desc9, desc6,desc7,desc8);

[D610,D710,D810,AGD610,AGD710,

AGD810,interMax2b,interMin2b,interAvg2b]

= inter2b(desc10, desc6,desc7,desc8);

[D1113,D1213,D1112,AGD1112,AGD1113,

AGD1213,intraMin3,intraMax3,intraAvg3,

maxRange3,minRange3] = intra3(desc11,desc12,desc13);

[D1114,D1214,D1314,AGD1114,AGD1214,AGD1314,

interMin3a,interMax3a,interAvg3a]

56

= inter3a(desc14,desc11,desc12,desc13);

[D1115,D1215,D1315,AGD1115,AGD1215,

AGD1315,interMin3b,interMax3b,interAvg3b]

= inter3b(desc15,desc11,desc12,desc13);

[D1618,D1718,D1617,AGD1618,AGD1718,AGD1617,intraMin4,

intraMax4,intraAvg4,maxRange4,minRange4]

= intra4(desc16,desc17,desc18);

[D1619,D1719,D1819,AGD1619,AGD1719

,AGD1819,interMin4a,interMax4a,interAvg4a]

= inter4a(desc19,desc16,desc17,desc18);

[D1620,D1720,D1820,AGD1620,

AGD1720,AGD1820,interMin4b,interMax4b,interAvg4b]

=inter4b(desc20,desc16,desc17,desc18);

[D2123,D2223,D2122,AGD2122,AGD2123,AGD2223,

intraMin5,intraMax5,intraAvg5,maxRange5,minRange5]

= intra5(desc21,desc22,desc23);

[D2124,D2224,D2324,AGD2124,AGD2224,AGD2324,

interMin5a,interMax5a,interAvg5a]

= inter5a(desc24,desc21,desc22,desc23);

[D2125,D2225,D2325,AGD2125,AGD2225,AGD2325,

interMin5b,interMax5b,interAvg5b]

= inter5b(desc25,desc21,desc22,desc23);

[D2628,D2728,D2627,AGD2628,AGD2728,AGD2627,

intraMin6,intraMax6,intraAvg6,

maxRange6,minRange6] = intra6(desc26,desc27,desc28);

[D2629,D2729,D2829,AGD2629,AGD2729,AGD2829,

interMin6a,interMax6a,interAvg6a]

= inter6a(desc29,desc26,desc27,desc28);

[D2630,D2730,D2830,AGD2630,AGD2730,

AGD2830,interMin6b,interMax6b,interAvg6b]

= inter6b(desc30,desc26,desc27,desc28);

[D3133,D3233,D3132,AGD3132,AGD3133,AGD3233

,intraMin7,intraMax7,intraAvg7,maxRange7,minRange7]

= intra7(desc31,desc32,desc33);

57

[D3134,D3234,D3334,AGD3134,AGD3234,AGD3334,

interMin7a,interMax7a,interAvg7a]

= inter7a(desc34,desc31,desc32,desc33);

[D3135,D3235,D3335,AGD3135,AGD3235,AGD3335,

interMin7b,interMax7b,interAvg7b]

= inter7b(desc35,desc31,desc32,desc33);

[D3638,D3738,D3637,AGD3638,AGD3738,AGD3637

,intraMin8,intraMax8,intraAvg8,maxRange8,minRange8

= intra8(desc36,desc37,desc38);

[D3639,D3739,D3839,AGD3639,AGD3739,AGD3839,

interMin8a,interMax8a,interAvg8a]

= inter8a(desc39,desc36,desc37,desc38);

[D3640,D3740,D3840,AGD3640,AGD3740,AGD3840,

interMin8b,interMax8b,interAvg8b]

= inter8b(desc40,desc36,desc37,desc38);

[D4143,D4243,D4142,AGD4142,AGD4143,AGD4243

,intraMin9,intraMax9,intraAvg9,maxRange9,minRange9]

= intra9(desc41,desc42,desc43);

[D4144,D4244,D4344,AGD4144,AGD4244,AGD4344,

interMin9a,interMax9a,interAvg9a]

= inter9a(desc44,desc41,desc42,desc43);

[D4145,D4245,D4345,AGD4145,AGD4245,AGD4345,

interMin9b,interMax9b,interAvg9b]

= inter9b(desc45,desc41,desc42,desc43);

[D4648,D4748,D4647,AGD4648,AGD4748,AGD4647,

intraMin10,intraMax10,intraAvg10,maxRange10,minRange10]

= intra10(desc46,desc47,desc48);

[D4649,D4749,D4849,AGD4649,AGD4749,AGD4849,

interMin10a,interMax10a,interAvg10a]

= inter10a(desc49,desc46,desc47,desc48);

[D4650,D4750,D4850,AGD4650,AGD4750,AGD4850,i

nterMin10b,interMax10b,interAvg10b]

= inter10b(desc50,desc46,desc47,desc48);

[D5153,D5253,D5152,AGD5152,AGD5153,AGD5253,

58

intraMin11,intraMax11,intraAvg11,maxRange11,minRange11]

= intra11(desc51,desc52,desc53);

[D5154,D5254,D5354,AGD5154,AGD5254,AGD5354,

interMin11a,interMax11a,interAvg11a]

= inter11a(desc54,desc51,desc52,desc53);

[D5155,D5255,D5355,AGD5155,AGD5255,AGD5355,

interMin11b,interMax11b,interAvg11b]

= inter11b(desc55,desc51,desc52,desc53);

[D5658,D5758,D5657,AGD5658,

AGD5758,AGD5657,intraMin12,intraMax12,intraAvg12,maxRange12,minRange12]

= intra12(desc56,desc57,desc58);

[D5659,D5759,D5859,AGD5659,AGD5759,AGD5859,i

nterMin12a,interMax12a,interAvg12a]

= inter12a(desc59,desc56,desc57,desc58);

[D5660,D5760,D5860,AGD5660,AGD5760,AGD5860,

interMin12b,interMax12b,interAvg12b]

= inter12b(desc60,desc56,desc57,desc58);

[D6163,D6263,D6162,AGD6162,AGD6163,AGD6263,

intraMin13,intraMax13,

intraAvg13,maxRange13,minRange13]

= intra13(desc61,desc62,desc63);

[D6164,D6264,D6364,AGD6164,AGD6264,AGD6364,

interMin13a,interMax13a,interAvg13a]

= inter13a(desc64, desc61,desc62,desc63);

[D6165,D6265,D6365,AGD6165,AGD6265,AGD6365,

interMin13b,interMax13b,interAvg13b]

= inter13b(desc65, desc61,desc62,desc63);

[D6668,D6768,D6667,AGD6768,AGD6668,AGD6667,

intraMin14,intraMax14,intraAvg14,

maxRange14,minRange14] = intra14(desc66,desc67,desc68);

[D6669,D6769,D6869,AGD6669,AGD6769,AGD6869,

interMin14a,interMax14a,

interAvg14a] = inter14a(desc69,desc66,desc67,desc68);

[D6670,D6770,D6870,AGD6670,AGD6770,AGD6870,interMin14b,

59

interMax14b,interAvg14b] = inter14b(desc70,desc66,desc67,desc68);

[D7173,D7273,D7172,AGD7172,AGD7173,AGD7273,intraMin15

,intraMax15,intraAvg15,maxRange15,

minRange15] = intra15(desc71,desc72,desc73);

[D7174,D7274,D7374,AGD7174,AGD7274,AGD7374,interMin15a

,interMax15a,interAvg15a] = inter15a(desc74,desc71,desc72,desc73);

[D7175,D7275,D7375,AGD7175,AGD7275,AGD7375,

interMin15b,interMax15b,interAvg15b] = inter15b(desc75,desc71,desc72,desc73);

[D7678,D7778,D7677,AGD7678,AGD7778,AGD7677,

intraMin16,intraMax16,intraAvg16,

maxRange16,minRange16] = intra16(desc76,desc77,desc78);

[D7679,D7779,D7879,AGD7679,AGD7779,

AGD7879,interMin16a,interMax16a,interAvg16a]

= inter16a(desc79,desc76,desc77,desc78);

[D7680,D7780,D7880,AGD7680,AGD7780,AGD7880

,interMin16b,interMax16b,interAvg16b]

= inter16b(desc80,desc76,desc77,desc78);

[D8183,D8283,D8182,AGD8182,AGD8183,

AGD8283,intraMin17,intraMax17,intraAvg17,maxRange17,minRange17] =

intra17(desc81,desc82,desc83);

[D8184,D8284,D8384,AGD8184,AGD8284,AGD8384,

interMin17a,interMax17a,interAvg17a]

= inter17a(desc84, desc81,desc82,desc83);

[D8185,D8285,D8385,AGD8185,AGD8285,AGD8385,

interMin17b,interMax17b,interAvg17b]

= inter17b(desc85,desc81,desc82,desc83);

[D8688,D8788,D8687,AGD8688,AGD8788,AGD8687,

intraMin18,intraMax18,intraAvg18,

maxRange18,minRange18] = intra18(desc86,desc87,desc88);

[D8689,D8789,D8889,AGD8689,AGD8789,AGD8889,

interMin18a,interMax18a,interAvg18a]

= inter18a(desc89,desc86,desc87,desc88);

[D8690,D8790,D8890,AGD8690,AGD8790,AGD8890,

60

interMin18b,interMax18b,interAvg18b]

= inter18b(desc90,desc86,desc87,desc88);

fprintf(2, ’creating the test sample keypoints MATLAB template .\n’);

save([keypoint_path,’TESTSIGNATURES.mat’]);

++

61

VERIFIERaccuracy.m

This script calculates the sensitivity and the specificity of the signature verfifier based on the test

sample created byCREATETtesttemplate.mscript.

load([’E:\SIGNATURE_EVANS\KEYPOINTS\TESTKEYSET\TESTSIGNATURES.mat’]);

load([’C:\Documents and Settings\!-UseR\Desktop\SIGNATURE_EVANS\KEYPOINTS\TESTKEY

if interMax1a < intraMax1

maxtP1=1 ;

else maxtP1=0;

end

if interMax1a > intraMax1

maxfN1=1;

else maxfN1=0;

end

if interAvg1a < intraAvg1

avgtP1=1;

else avgtP1=0;

end

if interAvg1a > intraAvg1

avgfN1=1;

else avgfN1=0;

end

if interMin1a < intraMin1

mintP1=1;

else mintP1=0;

end

if interMin1a > intraMin1

minfN1=1;

else minfN1=0;

end

if interMax1a < maxRange1

maxRtP1=1;

62

else maxRtP1=0;

end

if interMax1a > maxRange1

maxRfN1=1;

else maxRfN1=0;

end

if interMin1a < minRange1

minRtP1=1;

else minRtP1=0;

end

if interMin1a > minRange1

minRfN1=1;

else minRfN1=0;

end

if interMax1b < intraMax1

maxfP1=1 ;

else maxfP1=0;

end

if interMax1b > intraMax1

maxtN1=1;

else maxtN1=0;

end

if interAvg1b < intraAvg1

avgfP1=1;

else avgfP1=0;

end

if interAvg1b > intraAvg1

avgtN1=1;

else avgtN1=0;

end

63

if interMin1b < intraMin1

minfP1=1;

else minfP1=0;

end

if interMin1b > intraMin1

mintN1=1;

else mintN1=0;

end

if interMax1b < maxRange1

maxRfP1=1;

else maxRfP1=0;

end

if interMax1b > maxRange1

maxRtN1=1;

else maxRtN1=0;

end

if interMin1b < minRange1

minRfP1=1;

else minRfP1=0;

end

if interMin1b > minRange1

minRtN1=1;

else minRtN1=0;

end

if interMax2a < intraMax2

maxtP2=1 ;

else maxtP2=0;

64

end

if interMax2a > intraMax2

maxfN2=1;

else maxfN2=0;

end

if interAvg2a < intraAvg2

avgtP2=1;

else avgtP2=0;

end

if interAvg2a > intraAvg2

avgfN2=1;

else avgfN2=0;

end

if interMin2a < intraMin2

mintP2=1;

else mintP2=0;

end

if interMin2a > intraMin2

minfN2=1;

else minfN2=0;

end

if interMax2a < maxRange2

maxRtP2=1;

else maxRtP2=0;

end

if interMax2a > maxRange2

maxRfN2=1;

else maxRfN2=0;

end

if interMin2a < minRange2

minRtP2=1;

65

else minRtP2=0;

end

if interMin2a > minRange2

minRfN2=1;

else minRfN2=0;

end

if interMax2b < intraMax2

maxfP2=1 ;

else maxfP2=0;

end

if interMax2b > intraMax2

maxtN2=1;

else maxtN2=0;

end

if interAvg2b < intraAvg2

avgfP2=1;

else avgfP2=0;

end

if interAvg2b > intraAvg2

avgtN2=1;

else avgtN2=0;

end

if interMin2b < intraMin2

minfP2=1;

else minfP2=0;

end

if interMin2b > intraMin2

mintN2=1;

else mintN2=0;

66

end

if interMax2b < maxRange2

maxRfP2=1;

else maxRfP2=0;

end

if interMax2b > maxRange2

maxRtN2=1;

else maxRtN2=0;

end

if interMin2b < minRange2

minRfP2=1;

else minRfP2=0;

end

if interMin2b > minRange2

minRtN2=1;

else minRtN2=0;

end

if interMax3a < intraMax3

maxtP3=1 ;

else maxtP3=0;

end

if interMax3a > intraMax3

maxfN3=1;

else maxfN3=0;

end

if interAvg3a < intraAvg3

avgtP3=1;

else avgtP3=0;

67

end

if interAvg3a > intraAvg3

avgfN3=1;

else avgfN3=0;

end

if interMin3a < intraMin3

mintP3=1;

else mintP3=0;

end

if interMin3a > intraMin3

minfN3=1;

else minfN3=0;

end

if interMax3a < maxRange3

maxRtP3=1;

else maxRtP3=0;

end

if interMax3a > maxRange3

maxRfN3=1;

else maxRfN3=0;

end

if interMin3a < minRange3

minRtP3=1;

else minRtP3=0;

end

if interMin3a > minRange3

minRfN3=1;

else minRfN3=0;

end

if interMax3b < intraMax3

68

maxfP3=1 ;

else maxfP3=0;

end

if interMax3b > intraMax3

maxtN1=1;

else maxtN3=0;

end

if interAvg3b < intraAvg3

avgfP3=1;

else avgfP3=0;

end

if interAvg3b > intraAvg3

avgtN3=1;

else avgtN3=0;

end

if interMin3b < intraMin3

minfP3=1;

else minfP3=0;

end

if interMin3b > intraMin3

mintN3=1;

else mintN3=0;

end

if interMax3b < maxRange3

maxRfP3=1;

else maxRfP3=0;

end

if interMax3b > maxRange3

maxRtN3=1;

69

else maxRtN3=0;

end

if interMin3b < minRange3

minRfP3=1;

else minRfP3=0;

end

if interMin3b > minRange3

minRtN3=1;

else minRtN3=0;

end

if interMax4a < intraMax4

maxtP4=1 ;

else maxtP4=0;

end

if interMax4a > intraMax4

maxfN4=1;

else maxfN4=0;

end

if interAvg4a < intraAvg4

avgtP4=1;

else avgtP4=0;

end

if interAvg4a > intraAvg4

avgfN4=1;

else avgfN4=0;

end

if interMin4a < intraMin4

mintP4=1;

else mintP4=0;

end

70

if interMin4a > intraMin4

minfN4=1;

else minfN4=0;

end

if interMax4a < maxRange4

maxRtP4=1;

else maxRtP4=0;

end

if interMax4a > maxRange4

maxRfN4=1;

else maxRfN4=0;

end

if interMin4a < minRange4

minRtP4=1;

else minRtP4=0;

end

if interMin4a > minRange4

minRfN4=1;

else minRfN4=0;

end

if interMax4b < intraMax4

maxfP4=1 ;

else maxfP4=0;

end

if interMax4b > intraMax4

maxtN4=1;

else maxtN4=0;

end

if interAvg4b < intraAvg4

71

avgfP4=1;

else avgfP4=0;

end

if interAvg4b > intraAvg4

avgtN4=1;

else avgtN4=0;

end

if interMin4b < intraMin4

minfP4=1;

else minfP4=0;

end

if interMin4b > intraMin4

mintN4=1;

else mintN4=0;

end

if interMax4b < maxRange4

maxRfP4=1;

else maxRfP4=0;

end

if interMax4b > maxRange4

maxRtN4=1;

else maxRtN4=0;

end

if interMin4b < minRange4

minRfP4=1;

else minRfP4=0;

end

if interMin4b > minRange4

minRtN4=1;

else minRtN4=0;

72

end

if interMax5a < intraMax5

maxtP5=1 ;

else maxtP5=0;

end

if interMax5a > intraMax5

maxfN5=1;

else maxfN5=0;

end

if interAvg5a < intraAvg5

avgtP5=1;

else avgtP5=0;

end

if interAvg5a > intraAvg5

avgfN5=1;

else avgfN5=0;

end

if interMin5a < intraMin5

mintP5=1;

else mintP5=0;

end

if interMin5a > intraMin5

minfN5=1;

else minfN5=0;

end

if interMax5a < maxRange5

maxRtP5=1;

else maxRtP5=0;

end

if interMax5a > maxRange5

maxRfN5=1;

73

else maxRfN5=0;

end

if interMin5a < minRange5

minRtP5=1;

else minRtP5=0;

end

if interMin5a > minRange5

minRfN5=1;

else minRfN5=0;

end

if interMax5b < intraMax5

maxfP5=1 ;

else maxfP5=0;

end

if interMax5b > intraMax5

maxtN5=1;

else maxtN5=0;

end

if interAvg5b < intraAvg5

avgfP5=1;

else avgfP5=0;

end

if interAvg5b > intraAvg5

avgtN5=1;

else avgtN5=0;

end

if interMin5b < intraMin5

minfP5=1;

else minfP5=0;

end

74

if interMin5b > intraMin5

mintN5=1;

else mintN5=0;

end

if interMax5b < maxRange5

maxRfP5=1;

else maxRfP5=0;

end

if interMax5b > maxRange5

maxRtN5=1;

else maxRtN5=0;

end

if interMin5b < minRange5

minRfP5=1;

else minRfP5=0;

end

if interMin5b > minRange5

minRtN5=1;

else minRtN5=0;

end

if interMax6a < intraMax6

maxtP6=1 ;

else maxtP6=0;

end

if interMax6a > intraMax6

maxfN6=1;

else maxfN6=0;

end

if interAvg6a < intraAvg6

75

avgtP6=1;

else avgtP6=0;

end

if interAvg6a > intraAvg6

avgfN6=1;

else avgfN6=0;

end

if interMin6a < intraMin6

mintP6=1;

else mintP6=0;

end

if interMin6a > intraMin6

minfN6=1;

else minfN6=0;

end

if interMax6a < maxRange6

maxRtP6=1;

else maxRtP6=0;

end

if interMin6a > maxRange6

maxRfN6=1;

else maxRfN6=0;

end

if interMin6a < minRange6

minRtP6=1;

else minRtP6=0;

end

76

if interMax6a > minRange6

minRfN6=1;

else minRfN6=0;

end

if interMax6b < intraMax6

maxfP6=1 ;

else maxfP6=0;

end

if interMax6b > intraMax6

maxtN6=1;

else maxtN6=0;

end

if interAvg6b < intraAvg6

avgfP6=1;

else avgfP6=0;

end

if interAvg6b > intraAvg6

avgtN6=1;

else avgtN6=0;

end

if interMin6b < intraMin6

minfP6=1;

else minfP6=0;

end

if interMin6b > intraMin6

mintN6=1;

else mintN6=0;

end

77

if interMax6b < maxRange6

maxRfP6=1;

else maxRfP6=0;

end

if interMax6b > maxRange6

maxRtN6=1;

else maxRtN6=0;

end

if interMin6b < minRange6

minRfP6=1;

else minRfP6=0;

end

if interMin6b > minRange6

minRtN6=1;

else minRtN6=0;

end

if interMax7a < intraMax7

maxtP7=1 ;

else maxtP7=0;

end

if interMax7a > intraMax7

maxfN7=1;

else maxfN7=0;

78

end

if interAvg7a < intraAvg7

avgtP7=1;

else avgtP7=0;

end

if interAvg7a > intraAvg7

avgfN7=1;

else avgfN7=0;

end

if interMin7a < intraMin7

mintP7=1;

else mintP7=0;

end

if interMin7a > intraMin7

minfN7=1;

else minfN7=0;

end

if interMax7a < maxRange7

maxRtP7=1;

else maxRtP7=0;

end

if interMax7a > maxRange7

maxRfN7=1;

else maxRfN7=0;

end

if interMin7a < minRange7

minRtP7=1;

else minRtP7=0;

end

if interMin7a > minRange7

minRfN7=1;

79

else minRfN7=0;

end

if interMax7b < intraMax7

maxfP7=1 ;

else maxfP7=0;

end

if interMax7b > intraMax7

maxtN7=1;

else maxtN7=0;

end

if interAvg7b < intraAvg7

avgfP7=1;

else avgfP7=0;

end

if interAvg7b > intraAvg7

avgtN7=1;

else avgtN7=0;

end

if interMin7b < intraMin7

minfP7=1;

else minfP7=0;

end

if interMin7b > intraMin7

mintN7=1;

else mintN7=0;

end

if interMax7b < maxRange7

maxRfP7=1;

else maxRfP7=0;

end

80

if interMax7b > maxRange7

maxRtN7=1;

else maxRtN7=0;

end

if interMin7b < minRange7

minRfP7=1;

else minRfP7=0;

end

if interMin7b > minRange7

minRtN7=1;

else minRtN7=0;

end

if interMax8a < intraMax8

maxtP8=1 ;

else maxtP8=0;

end

if interMax8a > intraMax8

maxfN8=1;

else maxfN8=0;

end

if interAvg8a < intraAvg8

avgtP8=1;

else avgtP8=0;

end

if interAvg8a > intraAvg8

avgfN8=1;

else avgfN8=0;

end

if interMin8a < intraMin8

81

mintP8=1;

else mintP8=0;

end

if interMin8a > intraMin8

minfN8=1;

else minfN8=0;

end

if interMax8a < maxRange8

maxRtP8=1;

else maxRtP8=0;

end

if interMax8a > maxRange8

maxRfN8=1;

else maxRfN8=0;

end

if interMin8a < minRange8

minRtP8=1;

else minRtP8=0;

end

if interMin8a > minRange8

minRfN8=1;

else minRfN8=0;

end

if interMax8b < intraMax8

maxfP8=1 ;

else maxfP8=0;

end

if interMax8b > intraMax8

maxtN8=1;

else maxtN8=0;

82

end

if interAvg8b < intraAvg8

avgfP8=1;

else avgfP8=0;

end

if interAvg8b > intraAvg8

avgtN8=1;

else avgtN8=0;

end

if interMin8b < intraMin8

minfP8=1;

else minfP8=0;

end

if interMin8b > intraMin8

mintN8=1;

else mintN8=0;

end

if interMax8b < maxRange8

maxRfP8=1;

else maxRfP8=0;

end

if interMax8b > maxRange8

maxRtN8=1;

else maxRtN8=0;

end

if interMin8b < minRange8

minRfP8=1;

else minRfP8=0;

83

end

if interMin8b > minRange8

minRtN8=1;

else minRtN8=0;

end

if interMax9a < intraMax9

maxtP9=1 ;

else maxtP9=0;

end

if interMax9a > intraMax9

maxfN9=1;

else maxfN9=0;

end

if interAvg9a < intraAvg9

avgtP9=1;

else avgtP9=0;

end

if interAvg9a > intraAvg9

avgfN9=1;

else avgfN9=0;

end

if interMin9a < intraMin9

mintP9=1;

else mintP9=0;

end

if interMin9a > intraMin9

minfN9=1;

else minfN9=0;

end

if interMax9a < maxRange9

84

maxRtP9=1;

else maxRtP9=0;

end

if interMax9a > maxRange9

maxRfN9=1;

else maxRfN9=0;

end

if interMin9a < minRange9

minRtP9=1;

else minRtP9=0;

end

if interMin9a > minRange9

minRfN9=1;

else minRfN9=0;

end

if interMax9b < intraMax9

maxfP9=1 ;

else maxfP9=0;

end

if interMax9b > intraMax9

maxtN9=1;

else maxtN9=0;

end

if interAvg9b < intraAvg9

avgfP9=1;

else avgfP9=0;

end

if interAvg9b > intraAvg9

85

avgtN9=1;

else avgtN9=0;

end

if interMin9b < intraMin9

minfP9=1;

else minfP9=0;

end

if interMin9b > intraMin9

mintN9=1;

else mintN9=0;

end

if interMax9b < maxRange9

maxRfP9=1;

else maxRfP9=0;

end

if interMax9b > maxRange9

maxRtN9=1;

else maxRtN9=0;

end

if interMin9b < minRange9

minRfP9=1;

else minRfP9=0;

end

if interMin9b > minRange9

minRtN9=1;

else minRtN9=0;

end

if interMax10a < intraMax10

86

maxtP10=1 ;

else maxtP6=0;

end

if interMax10a > intraMax10

maxfN10=1;

else maxfN10=0;

end

if interAvg10a < intraAvg10

avgtP10=1;

else avgtP10=0;

end

if interAvg10a > intraAvg10

avgfN10=1;

else avgfN10=0;

end

if interMin10a < intraMin10

mintP10=1;

else mintP10=0;

end

if interMin10a > intraMin10

minfN10=1;

else minfN10=0;

end

if interMax10a < maxRange10

maxRtP10=1;

else maxRtP10=0;

end

if interMax10a > maxRange10

maxRfN10=1;

else maxRfN10=0;

87

end

if interMin10a < minRange10

minRtP10=1;

else minRtP10=0;

end

if interMin10a > minRange10

minRfN10=1;

else minRfN10=0;

end

if interMax10b < intraMax10

maxfP10=1 ;

else maxfP10=0;

end

if interMax10b > intraMax10

maxtN10=1;

else maxtN10=0;

end

if interAvg10b < intraAvg10

avgfP10=1;

else avgfP10=0;

end

if interAvg10b > intraAvg10

avgtN10=1;

else avgtN10=0;

end

if interMin10b < intraMin10

minfP10=1;

else minfP10=0;

88

end

if interMin10b > intraMin10

mintN10=1;

else mintN10=0;

end

if interMax10b < maxRange10

maxRfP10=1;

else maxRfP10=0;

end

if interMax10b > maxRange10

maxRtN10=1;

else maxRtN10=0;

end

if interMin10b < minRange10

minRfP10=1;

else minRfP10=0;

end

if interMin10b > minRange10

minRtN10=1;

else minRtN10=0;

end

if interMax11a < intraMax11

maxtP11=1 ;

else maxtP11=0;

end

if interMax11a > intraMax11

maxfN11=1;

else maxfN11=0;

89

end

if interAvg11a < intraAvg11

avgtP11=1;

else avgtP11=0;

end

if interAvg11a > intraAvg11

avgfN11=1;

else avgfN11=0;

end

if interMin11a < intraMin11

mintP11=1;

else mintP11=0;

end

if interMin11a > intraMin11

minfN11=1;

else minfN11=0;

end

if interMax11a < maxRange11

maxRtP11=1;

else maxRtP11=0;

end

if interMax11a > maxRange11

maxRfN11=1;

else maxRfN11=0;

end

if interMin11a < minRange11

minRtP11=1;

else minRtP11=0;

90

end

if interMin11a > minRange11

minRfN11=1;

else minRfN11=0;

end

if interMax11b < intraMax11

maxfP11=1 ;

else maxfP11=0;

end

if interMax11b > intraMax11

maxtN11=1;

else maxtN11=0;

end

if interAvg11b < intraAvg11

avgfP11=1;

else avgfP11=0;

end

if interAvg11b > intraAvg11

avgtN11=1;

else avgtN11=0;

end

if interMin11b < intraMin11

minfP11=1;

else minfP11=0;

end

if interMin11b > intraMin11

mintN11=1;

else mintN11=0;

end

91

if interMax11b < maxRange11

maxRfP11=1;

else maxRfP11=0;

end

if interMax11b > maxRange11

maxRtN11=1;

else maxRtN11=0;

end

if interMin11b < minRange11

minRfP11=1;

else minRfP11=0;

end

if interMin11b > minRange11

minRtN11=1;

else minRtN11=0;

end

if interMax12a < intraMax12

maxtP12=1 ;

else maxtP12=0;

end

if interMax12a > intraMax12

maxfN12=1;

else maxfN12=0;

end

if interAvg12a < intraAvg12

avgtP12=1;

else avgtP12=0;

92

end

if interAvg12a > intraAvg12

avgfN12=1;

else avgfN12=0;

end

if interMin12a < intraMin12

mintP12=1;

else mintP12=0;

end

if interMin12a > intraMin12

minfN12=1;

else minfN12=0;

end

if interMax12a < maxRange12

maxRtP12=1;

else maxRtP12=0;

end

if interMax12a > maxRange12

maxRfN12=1;

else maxRfN12=0;

end

if interMin12a < minRange12

minRtP12=1;

else minRtP12=0;

end

if interMin12a > minRange12

minRfN12=1;

else minRfN12=0;

93

end

if interMax12b < intraMax12

maxfP12=1 ;

else maxfP12=0;

end

if interMax12b > intraMax12

maxtN12=1;

else maxtN12=0;

end

if interAvg12b < intraAvg12

avgfP12=1;

else avgfP12=0;

end

if interAvg12b > intraAvg12

avgtN12=1;

else avgtN12=0;

end

if interMin12b < intraMin12

minfP12=1;

else minfP12=0;

end

if interMin12b > intraMin12

mintN12=1;

else mintN12=0;

end

if interMax12b < maxRange12

maxRfP12=1;

else maxRfP12=0;

end

94

if interMax12b > maxRange12

maxRtN12=1;

else maxRtN12=0;

end

if interMax12b < minRange12

minRfP12=1;

else minRfP12=0;

end

if interMax12b > minRange12

minRtN12=1;

else minRtN12=0;

end

if interMax13a < intraMax13

maxtP13=1 ;

else maxtP13=0;

end

if interMax13a > intraMax13

maxfN13=1;

else maxfN13=0;

end

if interAvg13a < intraAvg13

avgtP13=1;

else avgtP13=0;

end

if interAvg13a > intraAvg13

avgfN13=1;

else avgfN13=0;

end

if interMin13a < intraMin13

mintP13=1;

95

else mintP13=0;

end

if interMin13a > intraMin13

minfN13=1;

else minfN13=0;

end

if interMax13a < maxRange13

maxRtP13=1;

else maxRtP13=0;

end

if interMax13a > maxRange13

maxRfN13=1;

else maxRfN13=0;

end

if interMin13a < minRange13

minRtP13=1;

else minRtP13=0;

end

if interMin13a > minRange13

minRfN13=1;

else minRfN13=0;

end

if interMax13b < intraMax13

maxfP13=1 ;

else maxfP13=0;

96

end

if interMax13b > intraMax13

maxtN13=1;

else maxtN13=0;

end

if interAvg13b < intraAvg13

avgfP13=1;

else avgfP13=0;

end

if interAvg13b > intraAvg13

avgtN13=1;

else avgtN13=0;

end

if interMin13b < intraMin13

minfP13=1;

else minfP13=0;

end

if interMin13b > intraMin13

mintN13=1;

else mintN13=0;

end

if interMax13b < maxRange13

maxRfP13=1;

else maxRfP13=0;

end

if interMax13b > maxRange13

maxRtN13=1;

else maxRtN13=0;

97

end

if interMin13b < minRange13

minRfP13=1;

else minRfP13=0;

end

if interMin13b > minRange13

minRtN13=1;

else minRtN13=0;

end

if interMax14a < intraMax14

maxtP14=1 ;

else maxtP14=0;

end

if interMax14a > intraMax14

maxfN14=1;

else maxfN14=0;

end

if interAvg14a < intraAvg14

avgtP14=1;

else avgtP14=0;

end

if interAvg14a > intraAvg14

avgfN14=1;

else avgfN14=0;

end

if interMin14a < intraMin14

mintP14=1;

else mintP14=0;

end

98

if interMin14a > intraMin14

minfN14=1;

else minfN14=0;

end

if interMax14a < maxRange14

maxRtP14=1;

else maxRtP14=0;

end

if interMax14a > maxRange14

maxRfN14=1;

else maxRfN14=0;

end

if interMin14a < minRange14

minRtP14=1;

else minRtP14=0;

end

if interMin14a > minRange14

minRfN14=1;

else minRfN14=0;

end

if interMax14b < intraMax14

maxfP14=1 ;

else maxfP14=0;

end

if interMax14b > intraMax14

maxtN14=1;

else maxtN14=0;

99

end

if interAvg14b < intraAvg14

avgfP14=1;

else avgfP14=0;

end

if interAvg14b > intraAvg14

avgtN14=1;

else avgtN14=0;

end

if interMin14b < intraMin14

minfP14=1;

else minfP14=0;

end

if interMin14b > intraMin14

mintN14=1;

else mintN14=0;

end

if interMax14b < maxRange14

maxRfP14=1;

else maxRfP14=0;

end

if interMax14b > maxRange14

maxRtN14=1;

else maxRtN14=0;

end

if interMin14b < minRange14

100

minRfP14=1;

else minRfP14=0;

end

if interMin14b > minRange14

minRtN14=1;

else minRtN14=0;

end

if interMax15a < intraMax15

maxtP15=1 ;

else maxtP15=0;

end

if interMax15a > intraMax15

maxfN15=1;

else maxfN15=0;

end

if interAvg15a < intraAvg15

avgtP15=1;

else avgtP15=0;

end

if interAvg15a > intraAvg15

avgfN15=1;

else avgfN15=0;

end

if interMin15a < intraMin15

mintP15=1;

else mintP15=0;

end

if interMin15a > intraMin15

101

minfN15=1;

else minfN15=0;

end

if interMax15a < maxRange15

maxRtP15=1;

else maxRtP15=0;

end

if interMax15a > maxRange15

maxRfN15=1;

else maxRfN15=0;

end

if interMin15a < minRange15

minRtP15=1;

else minRtP15=0;

end

if interMin15a > minRange15

minRfN15=1;

else minRfN15=0;

end

if interMax15b < intraMax15

maxfP15=1 ;

else maxfP15=0;

end

if interMax15b > intraMax15

maxtN15=1;

else maxtN15=0;

end

if interAvg15b < intraAvg15

avgfP15=1;

else avgfP15=0;

102

end

if interAvg15b > intraAvg15

avgtN15=1;

else avgtN15=0;

end

if interMin15b < intraMin15

minfP15=1;

else minfP15=0;

end

if interMin15b > intraMin15

mintN15=1;

else mintN15=0;

end

if interMax15b < maxRange15

maxRfP15=1;

else maxRfP15=0;

end

if interMax15b > maxRange15

maxRtN15=1;

else maxRtN15=0;

end

if interMin15b < minRange15

minRfP15=1;

else minRfP15=0;

end

if interMin15b > minRange15

minRtN15=1;

else minRtN15=0;

103

end

if interMax16a < intraMax16

maxtP16=1 ;

else maxtP16=0;

end

if interMax16a > intraMax16

maxfN16=1;

else maxfN16=0;

end

if interAvg16a < intraAvg16

avgtP16=1;

else avgtP16=0;

end

if interAvg16a > intraAvg16

avgfN16=1;

else avgfN16=0;

end

if interMin16a < intraMin16

mintP16=1;

else mintP16=0;

end

if interMin16a > intraMin16

minfN16=1;

else minfN16=0;

end

if interMax16a < maxRange16

maxRtP16=1;

else maxRtP16=0;

end

104

if interMax16a > maxRange16

maxRfN16=1;

else maxRfN16=0;

end

if interMin16a < minRange16

minRtP16=1;

else minRtP16=0;

end

if interMin16a > minRange16

minRfN16=1;

else minRfN16=0;

end

if interMax16b < intraMax16

maxfP16=1 ;

else maxfP16=0;

end

if interMax16b > intraMax16

maxtN16=1;

else maxtN16=0;

end

if interAvg16b < intraAvg16

avgfP16=1;

else avgfP16=0;

end

if interAvg16b > intraAvg16

avgtN16=1;

else avgtN16=0;

end

if interMin16b < intraMin16

105

minfP16=1;

else minfP16=0;

end

if interMin16b > intraMin16

mintN16=1;

else mintN16=0;

end

if interMax16b < maxRange16

maxRfP16=1;

else maxRfP16=0;

end

if interMax16b > maxRange16

maxRtN16=1;

else maxRtN16=0;

end

if interMin16b < minRange16

minRfP16=1;

else minRfP16=0;

end

if interMin16b > minRange16

minRtN16=1;

else minRtN16=0;

end

if interMax17a < intraMax17

maxtP17=1 ;

else maxtP17=0;

end

if interMax17a > intraMax17

maxfN17=1;

106

else maxfN17=0;

end

if interAvg17a < intraAvg17

avgtP17=1;

else avgtP17=0;

end

if interAvg17a > intraAvg17

avgfN17=1;

else avgfN17=0;

end

if interMin17a < intraMin17

mintP17=1;

else mintP17=0;

end

if interMin17a > intraMin17

minfN17=1;

else minfN17=0;

end

if interMax17a < maxRange17

maxRtP17=1;

else maxRtP17=0;

end

if interMax17a > maxRange17

maxRfN17=1;

else maxRfN17=0;

end

if interMin17a < minRange17

minRtP17=1;

else minRtP17=0;

107

end

if interMin17a > minRange17

minRfN17=1;

else minRfN17=0;

end

if interMax17b < intraMax17

maxfP17=1 ;

else maxfP17=0;

end

if interMax17b > intraMax17

maxtN17=1;

else maxtN17=0;

end

if interAvg17b < intraAvg17

avgfP17=1;

else avgfP17=0;

end

if interAvg17b > intraAvg17

avgtN17=1;

else avgtN17=0;

end

if interMin17b < intraMin17

minfP17=1;

else minfP17=0;

end

if interMin17b > intraMin17

mintN17=1;

else mintN17=0;

end

if interMax17b < maxRange17

108

maxRfP17=1;

else maxRfP17=0;

end

if interMax17b > maxRange17

maxRtN17=1;

else maxRtN17=0;

end

if interMin17b < minRange17

minRfP17=1;

else minRfP17=0;

end

if interMin17b > minRange17

minRtN17=1;

else minRtN17=0;

end

if interMax18a < intraMax18

maxtP18=1 ;

else maxtP18=0;

end

if interMax18a > intraMax18

maxfN18=1;

else maxfN18=0;

end

if interAvg18a < intraAvg18

avgtP18=1;

else avgtP18=0;

end

if interAvg18a > intraAvg18

109

avgfN18=1;

else avgfN18=0;

end

if interMin18a < intraMin18

mintP18=1;

else mintP18=0;

end

if interMin18a > intraMin18

minfN18=1;

else minfN18=0;

end

if interMax18a < maxRange18

maxRtP18=1;

else maxRtP18=0;

end

if interMax18a > maxRange18

maxRfN18=1;

else maxRfN18=0;

end

if interMin18a < minRange18

minRtP18=1;

else minRtP18=0;

end

if interMin18a > minRange18

minRfN18=1;

else minRfN18=0;

end

110

if interMax18b < intraMax18

maxfP18=1 ;

else maxfP18=0;

end

if interMax18b > intraMax18

maxtN18=1;

else maxtN18=0;

end

if interAvg18b < intraAvg18

avgfP18=1;

else avgfP18=0;

end

if interAvg18b > intraAvg18

avgtN18=1;

else avgtN18=0;

end

if interMin18b < intraMin18

minfP18=1;

else minfP18=0;

end

if interMin18b > intraMin18

mintN18=1;

else mintN18=0;

end

if interMax18b < maxRange18

maxRfP18=1;

else maxRfP18=0;

end

if interMax18b > maxRange18

111

maxRtN18=1;

else maxRtN18=0;

end

if interMin18b < minRange18

minRfP18=1;

else minRfP18=0;

end

if interMin18b > minRange18

minRtN18=1;

else minRtN18=0;

end

maxtp=[maxtP1 maxtP2 maxtP3 maxtP4 maxtP5 maxtP6 maxtP7

maxtP8 maxtP9 maxtP10 maxtP11 maxtP12 maxtP13

maxtP14 maxtP15 maxtP16 maxtP17 maxtP18];

MaxTP=sum(maxtp)

maxfn=[maxfN1 maxfN2 maxfN3 maxfN4 maxfN5 maxfN6

maxfN7 maxfN8 maxfN9 maxfN10 maxfN11 maxfN12

maxfN13 maxfN14 maxfN15 maxfN16 maxfN17 maxfN18];

MaxFN=sum(maxfn)

avgtp=[avgtP1 avgtP2 avgtP3 avgtP4 avgtP5 avgtP6

avgtP7 avgtP8 avgtP9 avgtP10 avgtP11 avgtP12 avgtP13

avgtP14 avgtP15 avgtP16 avgtP17 avgtP18];

AvgTP=sum(avgtp)

avgfn= [avgfN1 avgfN2 avgfN3 avgfN4 avgfN5 avgfN6

avgfN7 avgfN8 avgfN9 avgfN10 avgfN11 avgfN12

avgfN13 avgfN14 avgfN15 avgfN16 avgfN17 avgfN18];

AvgFN=sum(avgfn)

mintp=[mintP1 mintP2 mintP3 mintP4 mintP5 mintP6

mintP7 mintP8 mintP9 mintP10 mintP11 mintP12

mintP13 mintP14 mintP15 mintP16 mintP17 mintP18];

112

MinTP=sum(mintp)

minfn=[minfN1 minfN2 minfN3 minfN4 minfN5 minfN6

minfN7 minfN8 minfN9 minfN10 minfN11 minfN12

minfN13 minfN14 minfN15 minfN16 minfN17 minfN18];

MinFN=sum(minfn)

maxrtp=[maxRtP1 maxRtP2 maxRtP3 maxRtP4 maxRtP5

maxRtP6 maxRtP7 maxRtP8 maxRtP9 maxRtP10 maxRtP11 maxRtP12

maxRtP13 maxRtP14 maxRtP15 maxRtP16 maxRtP17 maxRtP18];

MaxRTP=sum(maxrtp)

maxrfn= [maxRfN1 maxRfN2 maxRfN3 maxRfN4 maxRfN5

maxRfN6 maxRfN7 maxRfN8 maxRfN9 maxRfN10 maxRfN11 maxRfN12

maxRfN13 maxRfN14 maxRfN15 maxRfN16 maxRfN17 maxRfN18];

MaxRFN=sum(maxrfn)

minrtp=[minRtP1 minRtP2 minRtP3 minRtP4 minRtP5 minRtP6

minRtP7 minRtP8 minRtP9 minRtP10 minRtP11 minRtP12

minRtP13 minRtP14 minRtP15 minRtP16 minRtP17 minRtP18];

MinRTP=sum(minrtp)

minrfn=[minRfN1 minRfN2 minRfN3 minRfN4 minRfN5

minRfN6 minRfN7 minRfN8 minRfN9 minRfN10 minRfN11

minRfN12 minRfN13 minRfN14 minRfN15 minRfN16 minRfN17 minRfN18];

MinRFN=sum(minrfn)

maxfp=[maxfP1 maxfP2 maxfP3 maxfP4 maxfP5 maxfP6

maxfP7 maxfP8 maxfP9 maxfP10 maxfP11 maxfP12 maxfP13

maxfP14 maxfP15 maxfP16 maxfP17 maxfP18];

MaxFP=sum(maxfp)

maxtn=[maxtN1 maxtN2 maxtN3 maxtN4 maxtN5 maxtN6 maxtN7

maxtN8 maxtN9 maxtN10 maxtN11 maxtN12 maxtN13

maxtN14 maxtN15 maxtN16 maxtN17 maxtN18];

MaxTN=sum(maxtn)

avgfp=[avgfP1 avgfP2 avgfP3 avgfP4 avgfP5

avgfP6 avgfP7 avgfP8 avgfP9 avgfP10 avgfP11 avgfP12

avgfP13 avgfP14 avgfP15 avgfP16 avgfP17 avgfP18];

AvgFP=sum(avgfp)

avgtn= [avgtN1 avgtN2 avgtN3 avgtN4 avgtN5 avgtN6

113

avgtN7 avgtN8 avgtN9 avgtN10 avgtN11 avgtN12

avgtN13 avgtN14 avgtN15 avgtN16 avgtN17 avgtN18];

AvgTN=sum(avgtn)

minfp=[minfP1 minfP2 minfP3 minfP4 minfP5 minfP6

minfP7 minfP8 minfP9 minfP10 minfP11 minfP12

minfP13 minfP14 minfP15 minfP16 minfP17 minfP18];

MinFP=sum(minfp)

mintn=[mintN1 mintN2 mintN3 mintN4 mintN5 mintN6

mintN7 mintN8 mintN9 mintN10 mintN11 mintN12

mintN13 mintN14 mintN15 mintN16 mintN17 mintN18];

MinTN=sum(mintn)

maxrfp=[maxRfP1 maxRfP2 maxRfP3 maxRfP4 maxRfP5

maxRfP6 maxRfP7 maxRfP8 maxRfP9 maxRfP10 maxRfP11

maxRfP12 maxRfP13 maxRfP14 maxRfP15 maxRfP16 maxRfP17 maxRfP18];

MaxRFP=sum(maxrfp)

maxrtn= [maxRtN1 maxRtN2 maxRtN3 maxRtN4 maxRtN5

maxRtN6 maxRtN7 maxRtN8 maxRtN9 maxRtN10 maxRtN11

maxRtN12 maxRtN13 maxRtN14 maxRtN15 maxRtN16 maxRtN17 maxRtN18];

MaxRTN=sum(maxrtn)

minrfp=[minRfP1 minRfP2 minRfP3 minRfP4 minRfP5

minRfP6 minRfP7 minRfP8 minRfP9 minRfP10 minRfP11

minRfP12 minRfP13 minRfP14 minRfP15 minRfP16 minRfP17 minRfP18];

MinRFP=sum(minrfp)

minrtn=[minRtN1 minRtN2 minRtN3 minRtN4 minRtN5

minRtN6 minRtN7 minRtN8 minRtN9 minRtN10 minRtN11

minRtN12 minRtN13 minRtN14 minRtN15 minRtN16 minRtN17 minRtN18];

MinRTN=sum(minrtn)

sensitivityUSINGMAX=MaxTP/(MaxTP+MaxFN)*100

specificityUSINGMAX=MaxTN/(MaxTN+MaxFP)*100

sensitivityUSINGAVG=AvgTP/(AvgTP+AvgFN)*100

specificityUSINGAVG=AvgTN/(AvgTN+AvgFP)*100

sensitivityUSINGMIN=MinTP/(MinTP+MinFN)*100

specificityUSINGMIN=MinTN/(MinTN+MinFP)*100

sensitivityUSINGMAXRANGE=MaxRTP/(MaxRTP+MaxRFN)*100

114

specificityUSINGMAXRANGE=MaxRTN/(MaxRTN+MinRFP)*100

sensitivityUSINGMINRANGE=MinRTP/(MinRTP+MinRFN)*100

specificityUSINGMINRANGE=MinRTN/(MinRTN+MinRFP)*100

115

6.2 Appendix B

Figure 6.1 shows signatures used in this project.

116

Figure 6.1: Signatures used in the project.

117

Bibliography

[1] B. Herbst. J. Coetzer. and J. Preez, “Online Signature Verification Using the Discrete Radon

Transform and a Hidden Markov Model,”EURASIP.Journal on Applied Signal Processing,

vol. 4, pp. 559–571, 2004.

[2] D. Lowe, “Distinctive Image features from Scale- invariant Keypoints.,”International Jour-

nal of Computer Vision., vol. 60, no. 2, pp. 91–110, 2004.

[3] R. Plamondon and S. N. Srihari, “ On-line and Off-line handwriting recognition,”IEEE

Trans.on Pattern Analysis and machine Intelligence, vol. 22, no. 1, pp. 63–84, 2000.

[4] S. I. Abuhaiba, “ Offline Signature Verification Using Graph Matching,”Turk J Elec Engine,

vol. 15, no. 1, 2007.

[5] A. I. Abdullah, “ Handwritten Signature Verification Using Image Invariants and Dynamic

Features,”Proceedings of the International Conference on Computer Graphics, Imaging and

Visualisation, 2006.

[6] G. F. Russel. A. Heilper. B. A. Smith. J. Hu. D.Markman. J. E. Graham. T. G. Zimmerman.

and C. Drews, “ Retail Application of Signature Verification,”Proceedings of SPIE 2004,

vol. 5404, pp. 206–214, August 2004.

[7] S. Srihari. K. M. Kalera. and A. XU, “Offline Signature Verification and Identification Using

Distance Statistics,”International Journal of Pattern Recognition And Artificial Intelligence,

vol. 18, no. 7, pp. 1339–1360, 2004.

[8] S. Reddy. B. Maghi. and P. Babu, “Novel Features for Offline signature verification.,”Journal

of Computer,Communication and Control., vol. 1, pp. 17–24, 2006.

118

[9] B. A. Jesus. A. Migual. and M. Traveiso, “ Off-line Geometric Parameters for Automatic

Signature Verification Using Fixed Point Arithemetic,”IEEE Trans.Pattern Analysis and

Machine Intelligence, vol. 27, no. 6, pp. 341–356, June 2005.

[10] K. B. Viyanak, “A color code Algorithm for Signature Recognition,”International Journal

of Pattern Recognition And Artificial Intelligence, vol. 6, no. 1, pp. 1–12, 2007.

[11] Z. Lin. W. Liang. and R. C. Zhao, “Offline signature verification Incorporating the prior

model,” International Conference on Machine Learning and Cybernetics, vol. 3, pp. 1602–

1606, 2003.

[12] T. S.enturk. E.Özgunduz. and E. Karshgil, “ Handwritten Signature Verification Using Image

Invariants and Dynamic Features,”Proceedings of the 13th European Signal Processing

Conference EUSIPCO 2005,Antalya Turkey, 4th-8th September, 2005.

[13] B. C. Lovell. V. K. Madasu. and K. Kubik, “Automatic Handwritten Signature verification

system for Australian Passports,”Science,Engineering and Technology Summit on Counter-

Terrorism,Canberra, pp. 53–66, 2004.

[14] H. S. Srihari and M. Beall, “Signature Verifcation Using Kolmogrov Smirnov Statistic,”

Proceedings of International Graphonomics Society,Salemo Italy, pp. 152–156, june,2005.

[15] Check fraud statistics, “National fraud centre,” http://www.ckfraud.org/statistics.html - Re-

trieved february 22,2008, 2008.

[16] Embassy of the United States Kampala Uganda, “Business fraud warning,”

http://kampala.usembassy.gov/business fraud warning2.html - Retrieved february 22,2008,

2008.

[17] Bank of Uganda, “Bankfraud,” http://www.bou.or.ug/BANKFRAUD.pdf-Retrieved february

22,2008, 2008.

[18] S. N. Srihari and A. Xu., “ Learning Strategies and Classification Methods for Offline Signa-

ture Verification,”Proceedings of the 7th international Workshop on Frontiers in handwriting

recognition, 2004.

[19] F. Bortolozi. E. R. Justino., A. E. Yocoubi. and R. Sabourin, “An Off-line Signature Verifica-

tion System Using HMM and Graphometric features,”DAS 2000,4th IAPR International on

Document Analysis Systems,Rio de Jeneiro, 2000.

119

[20] K. Faez. M. Dehghan. and M. Fathi, “Signature Verification Using Shape Descriptor and

Multiple Neural Network,” IEEE TENCON 1997-Speech and Image Technologies For Com-

puting and Telecomunications, pp. 415–418, 1997.

[21] H. Hammandlu and V. M. Krishna, “ Off-line Signature Verification and Forgery detection

using Fuzzy modeling,”Pattern Recognition, vol. 38, pp. 341–356, 2005.

[22] M. Blumenstein. S. Armand. and Muthukkumarasamy, “Off-line Signature Verification using

the Enhanced Modified Direction Feature and Neuralbased Classification,”International

Joint Conference on Neural Networks, 2006.

[23] Q. Qianghua. S. Yaiqian and P. Jingui, “Offline Signature Verification Using Geometric Fea-

tures Specific to Chinese Handwritting,”24th Int. Conf.Information Technology Interfaces,

June 24-27,2002.

[24] Y. Y. Wang. C. H. Leung. Y. Y. Tang. P. C. K. Kwok. K. W. E. Tse. B. Fang and Y. K. Wong,

“A Smoothness Index Based Approach for Off-line Signature Verification,”Proceedings

of the Fifth International Conference on Document Analysis and Recognition, pp. 785–787,

September 9,1999.

[25] Y. Y. wang. B. Fang. and C. H. Leung, “Offline Signature verification by analysis of cursive

stroke,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 15, no.

4, pp. 659–673, 2001.

[26] H. Miike. Y. Mizukami., M. Yoshimura and I. Yoshimura, “An Offline signature verification

system using extracted displacement function,”Pattern Recognition Letter, vol. 23, no. 13,

pp. 1569–1577, 2002.

[27] C. H. Leung. Y. Y. Tang. P. C. K. Kwok. K. W. Tse. B. Fang. and Y. K. Wong, “Off-line

signature verification with generated Training samples.,”IEEE proceedings Vision,Image

and Signal processing., vol. 149, no. 2, pp. 85–90, 2002.

[28] D. Lowe, “Object Recognition from Local Scale Invariant features.,”In International Con-

ference on Computer Vision, pp. 1150–1157, 1999.

[29] H. Kim. H. Lee. and H. K. Lee, “Robust Image Watermarking using Local Invariant Fea-

tures,” Proceedings of SPIE, vol. 45, no. 3, 2006.

120

[30] G. Enrico. B. Manuele., L. Anderea. and T. Massimo, “On the use of SIFT features for face

authentication.,”In the proceedings of the 2006 Conference on Computer Vision and Pattern

Recognition Workshop, pp. 91–110, 2006.

[31] P. Schwarz, “Recognition of Graffiti,”BS Thesis,The University of Western Australia, 2006.

[32] L. Dlagnekov, “Video-based Car Surveillance: Licence plate, Make and Model Recognition,”

MSc Thesis,University of Calfornia,San Diego, 2005.

[33] P. Sharath. P. UnSang. and A. K. Jain, “Robust Image Watermarking using Local Invariant

Features,”Proceedings of SPIE Defense and Security symposium Orlando,Florida, 2008.

[34] T.F. EL-Maraghi, “Matlab sift tutorial,” Available from:

ftp://ftp.cs.utoronto.ca/pub/jepson/teaching/vision/2503/SIFTtutorial.zip - Retrieved July

5,2008.

[35] I. H. Witten and E. Franh,Data Mining, Elesevier, 2005.

[36] B. Zhang. S. N. Srihari., C. I. Tomai. and S. J. Lee, “Individuality of Numerals.,”Proceed-

ings International Conference on Document Analysis and Recognition (ICDAR) Edinburgh,

Scotland, pp. 1096–1100, 2003.

[37] D. de Ridder. F. van der Heijden., R. P. W. Duinn. and D. M. J. Tax,Classification,Parameter

Estimation and State Estimation:An Engineering Approach using MATLAB, John Wiley and

Sons Ltd, 2004.

121

