Parse Trees

by

John Kennedy
Mathematics Department
Santa Monica College
1900 Pico Blvd.
Santa Monica, CA 90405

rkennedy@ix.netcom.com

Except for this comment explaining that it is blank for
some deliberate reason, this page is intentionally blank!

Parse Trees

The process whereby a computer compiler takes parts of human written source code and produces an
internal structure in memory that represents the correct parts of a program that can be executed is what
we call Parsing. This paper will demonstrate how to create parse trees on paper that represent well-
formed mathematical formulas or expressions. We then show some examples of recursive functions that
operate on those parse trees. It is these recursive functions that justify the importance of parse trees in
the first place. Since most readers probably don't have sufficient programming expertise, this paper does
not explain how to create parse trees programmatically. This in itself is another fascinating topic worthy
of a more advanced paper. However, the current paper will have served its purpose if it motivates the
reader to further investigate the use of parse trees in any application domain, let alone the use of trees in
general.

Mathematical expressions represent only a very small part of any computer language, but they also
involve the more intricate parts of the grammars that define a language. While we won't discuss the
formal grammar of any particular language, we mention that most modern computer languages such as
FORTRAN, BASIC, C++, PASCAL, and JAVA all handle and represent mathematical expressions by
internally using the equivalent of binary trees. For this reason it is worthwhile to learn the relationship
between mathematical expressions and binary trees.

First you should try to understand that the trees we are going to create are recursive data structures.
They are recursive in a sense that will become more clear as we gain some experience and show some
program code. But first we should show several examples of parse trees before we show what to do with
them. One of the simplest mathematical expressions we could write is something like a + b. The figure
below is a binary tree that represents this simple expression.

/ ’

@ \@

What are called nodes in our tree will be drawn as circles whose content describes the node. In the
above simple tree there are three nodes. The top node in any binary tree is called the root node. In the
above tree the root node represents the operation of addition. The bottom two nodes are called leaf
nodes and they represent the variables a and b. Since addition is commutative, the left-right order of the
nodes a and b is not important. However, since subtraction and division and exponentiation are not
commutative, we will show one standard way for drawing trees for expressions like z — y and m +n

and p?. Note that the exponential expression p? is often written as p” ¢ where the up-arrow " represents
the exponentiation operation.

AN ANPAN

page 1

The next expression for which we draw a parse tree is the expression: a + b + ¢ + d. The entire tree for
this expression is made by first drawing the simple trees for the two subexpressions a + b and ¢ = d and
then combining these two subtrees with the middle addition operation. The final resulting tree looks
like:

©
@

The top or root node in this case is the middle addition operation. The root node has two child nodes that
can be considered as subtrees. The left child node of the root represents another addition operation for
the a 4+ b sum while the right child of the root node represents the division operation.

By combining subtrees we can build more complicated trees. So far all of our non-leaf nodes have been
binary operations. If we wanted to draw the tree that represents sin (\/ a® + b?) we would need three

unary operations. The first unary operation is the trigonometric function SIN and the second is SQRT
which represents the square root, and the third would be SQ R for the squaring operation. In this
example we consider squaring as its own unary operation distinct from exponentiation. The parse tree

for sz’n(\/ a’ + b2) is shown below. Note how each unary operation has only one child, the subtree that

represents what that operation operates on. Be sure to make a distinction between SQRT and SQR.
Also note that parentheses are not part of any node in the tree.

page 2

As yet another example of a parse tree, consider the mathematical expression:

3(z +6) —log(5+ sin(y/lx +y]) +4(x+2)7°

To represent this expression we introduce three new unary operators. The logarithm function is denoted
by LOG and the absolute value function will be denoted by ABS and the unary negation operator that
appears in the exponent for = will be denoted by NV EG. Note that multiplication is a binary operation
that is represented by the dot - . The parse tree for this expression appears below.

Again note that grouping symbols do not appear anywhere in the tree. Also note that only variables and
constants appear as the bottom-most leaf nodes in the tree. All the interior tree nodes are either unary
operators or binary operations.

page 3

Although we have already noted that parentheses never appear as any part of any parse tree, the next
two examples show how parentheses used in different ways result in different parse trees. The parse tree

on the left is for the expression 2 - (3 - (4 - (5 - 6))) while the parse tree on the right is for the expression
(((2-3)-4)-5)-6.

O ©)
®/ \@

@ ©) @
® ® @ &

We can tell at a glance the difference between these two tree structures. These two trees are not

isomorphic to each other even though both trees represent the same expression that could be written
without any parenthesesas2-3-4-5 - 6.

All of the previous examples of trees have represented mathematical expressions. The next example
shows that parse trees can also be applied to logical expressions from sentential calculus, a branch of
symbolic logic. For the next parse tree example, the symbol — stands for NOT, V stands for OR, and
A stands for AND while = and <« stand for the CONDITIONAL and BICONDITIONAL
respectively. Then we can make the following parse tree that represents the symbolic logic expression:

(PA-Q)=(R< (PVQ)).

By now you should be gaining a better idea about how to construct a parse tree for any mathematical or
logical expression. Just to test your full understanding, try to write down the mathematical expression
that corresponds to the following parse tree.

page 4

Calculations Using Parse Trees

Next we will learn how parse trees can be used to perform mathematical calculations of the expressions
they represent. Consider the quadratic expression: ax? + bz + c. The tree structure below is how this
expression could be “parsed” inside a computer. In this case we have replaced the unary operator for
squaring with a simple multiplication operation. The numbering of the nodes in the tree shown below is
completely arbitrary. We are only using the numbers as a means of uniquely identifying the various
nodes because we have multiple nodes with + , and - and x contents.

page 5

A binary tree is a recursive data structure and one of the most powerful ideas in computer science is a
recursive function that acts over a tree. There are only 3 different recursive functions that can be written
to “traverse” any binary tree like the one shown above. By traversing we mean that we always start at
the root node and visit all the nodes in the tree just once. The connecting lines between the nodes dictate
the paths we take to move from one node to another. These recursive functions are also sometimes
considered as algorithms and they have the names PRE-ORDER, POST-ORDER and IN-ORDER.

In the PRE-ORDER algorithm you visit a node before you visit its children. In the POST-ORDER
algorithm you visit the children of a node before you visit the node itself. In the IN-ORDER algorithm
you visit the left child first, then you visit the node, and finally you visit the right child. The three orders
for the above quadratic tree are summarized in the next three tables below. The *'s represent the binary
multiplication operation. In this case we prefer using the * over the dot - for multiplication.

PRE-ORDER visitation time order--> | 1 2 |314(5(6|7|8]9(10|11

1. Visit the node node content--> z | ¢
2. Visit the children node number--> 1 2 |314(5(6|7]9|8(10(11

*
S
*
8
8
*
>

POST-ORDER visitation timeorder--> (1|2 (3|4 |5|6| 7 |8 9 |10 11

1. Visit the children node content--> a T
2. Visit the node node number--> 4161751381019

8
8
*
>
*
o
+

N+

11| 1

IN-ORDER visitationtimeorder--> |1 |2 |3 |4|5| 6 |78 9 | 10|11
1. Visit left child node content--> a
2. Visit the node node number--> 413
3. Visit right child

8
*
8
>
*
8
+
o

D
ot
-3
[\
oo
(o]

10 1 |11

When you read across the middle row of each table you should note that only the IN-ORDER table
gives the output for the expression as a normal human being would read it. But you should also note that
for the purposes of computation, the POST-ORDER row is even more valuable. Consider the following
as an application of the post-order algorithm where the calculations are carried out in a stack whose
elements are named X, Y, and Z. A stack is an example of a Last-In-First-Out structure that can be
compared to a Dixie Cup dispenser.

When you read a variable, it is like marking that variable name on a Dixie Cup and pushing the cup up
onto the bottom of a stack of Dixie cups. When you read a binary operation, the effect is as if you pull
down the last two Dixie cups off the stack as the operands for that operation. You compute the operation
answer and replace the two Dixie cups with one Dixie cup that holds the answer to the operation. Note
that in this manner only math subexpressions appear as Dixie cups. In the table below we can think that
X,Y,and Z are three Dixie Cup positions, not the Dixie cups themselves.

page 6

A stack with only three elements high is all that is required to evaluate the above quadratic tree. We read
the elements going across the middle row of the POST-ORDER table. The first three rows of the table
below show the contents of the stack as the calculation progresses through reading operands and
operators. The read order is the same as the node content order in the middle row of the above POST-
ORDER table. To make the read order perfectly clear we have labeled the time order as the last row in
the table. The table below shows exactly what takes place inside a Reverse Polish Logic calculator when
it calculates the expression ax? + bx + c.

A a az?

Y alz| a ax? b | ax? az?® + bx

X al|lx|x|2®|ax®]| b T br | ax® + bz c az?® + bz + ¢
read order —» a r x * * b x * + c +
timeorder—» Jo[1]2[3[4| 5 [6 | 7] 8] 9 10 11

You might note that only those trees all of whose nodes are binary operations with complete left and
right child nodes can have the IN-ORDER algorithm applied to them. Any unary operator can only have
either the PRE-ORDER or POST-ORDER algorithm applied to it.

For the remaining parts of this paper we assume you have both an interest in and a familiarity with a
computer language that can employ recursive functions and procedures, if not also some object oriented
facilities. Rest assured that PASCAL, C++, and JAVA qualify as decent languages in these respects.
Sorry, if you are only familiar with BASIC or FORTRAN, two languages that have outlived any real
usefulness. We prefer to give code examples in PASCAL if only because this language is excellent at
exposing algorithms and was designed by a mathematician and named after a mathematician. Our
second choice of a language would be JAVA. As a language, C++ would be our distant third choice.
Both PASCAL and JAVA have the advantage that they were designed by language designers. No
further comments about C++ would endear us with anyone who prefers that language.

Although we are going to show pseudo PASCAL code, we cannot emphasize enough that if you know
how to program in a modern language then by all means you should write and test programs to illustrate
for yourself what is going on under the hood. Only by writing and testing code can you fully appreciate
what we are describing.

Assuming a tree node has the following structure we can write the three functions to evaluate the
quadratic expression tree using the three tree-traversal orders. The following code is pseudo PASCAL.
Note that each function calls itself from within itself. That is why these three functions are called
recursive functions and that is why the tree structures they operate on are called recursive data
structures.

ATreeNode
NodeName > string
LeftChild : NodePointer
RightChild : NodePointer

page 7

procedure PreOrder(TreeNode : NodePointer);
begin
Output(TreeNode._NodeName);
iT TreeNode.LeftChild<>nil then PreOrder(TreeNode.LeftChild);
if TreeNode.RightChild<>nil then PreOrder(TreeNode.RightChild);
end;

procedure PostOrder(TreeNode : TreeNode);

begin
iT TreeNode.LeftChild<>nil then PostOrder(TreeNode.LeftChild);
iT TreeNode.RightChild<>nil then PostOrder(TreeNode.RightChild);
Output(TreeNode.NodeName);

end;

procedure InOrder(TreeNode : TreeNode);
begin
ifT TreeNode.LeftChild<>nil then InOrder(TreeNode.LeftChild);
Output(TreeNode.NodeName) ;
if TreeNode.RightChild<>nil then InOrder(TreeNode.RightChild);
end;

If you were to execute these functions where the initial input was the root node of the above quadratic
parse tree and if each time a node was Output, we just printed the node contents then you would
generate the middle row in each of the above three tables with the names PRE-ORDER, POST-ORDER,
and IN-ORDER.

The last two code examples that we give illustrate how you could build a function to evaluate any
mathematical or logical expression tree. Such a function is one of two key elements required to actually
compute a result based on the expression the tree represents. The other key element is a program that
actually builds the parse tree, but such a program is beyond the scope of this paper.

First, the mathematical expression evaluator function. As you will note, this function is a recursive
function since it calls itself within itself. We only show a limited set of both binary and unary operators.
But once you understand how the code works, you could extend this function to make it work with all
the common math operators that are found on any scientific calculator. There are about 40 such common
operators.

We now expand the definition of the ATreeNode structure to include the following fields. A
NodePointer is a variable that points to ATreeNode and NodePointerType is a type of variable that can
point to a tree node.

ATreeNode
NodeType : (Add,Subtract,Multiply,Divide,Power,AbsValue,Log,Negation,Sine,
Square,SquareRoot,XVariable,Constant);
LeftChild : NodePointer;
RightChild > NodePointer;
UnaryChild > NodePointer;

ConstantData : float;

page 8

The ConstantData field holds the floating point value of those nodes that are leaf node constants. For
an expression as simple as X+3 it would be the node representing the constant number 3 that would hold
the value 3 in the ConstantData field. In this case the OperatorName for that node would be Constant.
Note that the node that represents the variable X need not hold the floating point value for X. Only
Constant nodes make use of the ConstantData field.

You call the function EvaluateNode with two parameters. Assuming your expression has the variable x
as its only variable, the first parameter is the floating point value of X. The second parameter is the root
node of the entire tree. The function returns the floating point value that represents the entire expression.
This single function is all that is required to compute any mathematical expression represented by any
parse tree, no matter how big or complex the parse tree.

function EvaluateNode(X : float;
NodePointer : NodePointerType) : float;
var RightTemp : float;
LeftTemp : float;
UnaryTemp : float;

begin
with NodePointer do
begin
case NodeType of
Add - EvaluateNode := EvaluateNode(X,LeftChild) + EvaluateNode(X,RightChild);
Subtract : EvaluateNode := EvaluateNode(X,LeftChild) - EvaluateNode(X,RightChild);
Multiply : EvaluateNode := EvaluateNode(X,LeftChild)*EvaluateNode(X, RightChild);
Divide . begin
RightTemp := EvaluateNode(X,RightChild);
if (RightTemp = 0.0) then ErrorMessage := "Divison by 0~
else EvaluateNode := EvaluateNode(X,LeftChild)/RightTemp
end;
Power > begin
LeftTemp := EvaluateNode(X,LeftChild);
RightTemp := EvaluateNode(X,RightChild);
if LeftTemp <= 0.0 then ErrorMessage := "Improper base-”
else EvaluateNode := exp(RightTemp*In(LeftTemp))
end;
AbsValue : EvaluateNode := abs(EvaluateNode(X,UnaryChild));
Log . begin
UnaryTemp := EvaluateNode(X,UnaryChild);
if (UnaryTemp <= 0.0) then ErrorMessage := "Log(X) logarithm®;
else EvaluateNode := Log(UnaryTemp)
Negation : EvaluateNode := -EvaluateNode(X,UnaryChild);
Sine : EvaluateNode := sin(EvaluateNode(X,UnaryChild));
Square : EvaluateNode := sgr(EvaluateNode(X,UnaryChild));
SquareRoot : begin
UnaryTemp := EvaluateNode(X,UnaryChild);
if (UnaryTemp < 0.0) then ErrorMessage := "Square root";
else EvaluateNode := sqgrt(UnaryTemp)
end;
XVariable : EvaluateNode := X;
Constant : EvaluateNode := ConstantData
end
end

end; {function EvaluateNode}

page 9

The last function we write is one to evaluate logical expressions. Since there are fewer logical operators
this function seems simpler than the one above for math expressions. However, both functions are very
similar in nature.

In a logical expression we will normally have multiple variables so we assume there are global boolean
variables named PvariableTruthValue, QVariableTruthValue and RvVariableTruthValue that hold
the boolean values of variables with the names P, Q and R. These global variables would be assigned
their respective boolean truth values before this function would get called.

This function is called only once with the root node of the entire logical expression as its only input
parameter. This function returns the boolean value that represents the truth value for the entire
expression.

ALogicNode
NodeType : (LogicOR, LogicAND, Implies, ITfOnlylf, LogicNOT, VariableP,
VariableQ, VariableR, Constant);
RightChild > NodePointer;
LeftChild = NodePointer;
UnaryChild : NodePointer;
ConstantData : boolean;

function EvaluateNode(NodePointer : NodePointerType) : boolean;

begin
with NodePointer do
begin
case NodePointer_NodeType of
LogicOR : EvaluateNode := EvaluateNode(LeftChild) or EvaluateNode(RightChild);
LogicAND : EvaluateNode := EvaluateNode(LeftChild) and EvaluateNode(RightChild);
Implies : EvaluateNode := not (EvaluateNode(LeftChild) and
(not EvaluateNode(RightChild)));
IfOnlylf : EvaluateNode := EvaluateNode(LeftChild) = EvaluateNode(RightChild);
LogicNOT : EvaluateNode := not EvaluateNode(UnaryChild);
VariableP : EvaluateNode := PVariableTruthvalue;
VariableQ : EvaluateNode := QVariableTruthValue;
VariableR : EvaluateNode := RVariableTruthValue;
Constant : EvaluateNode := ConstantBooleanValue;
end;
end;

end; {function EvaluateNode}

Except for the names, and number of logical variables, the above function is all that is needed to compute all the
values to fill in any truth table for any logical expression, no matter how large or complicated the expression.

page 10

