
EULER
An Experiment in Language Definition

Thomas W. Christopher

Department of Computer Science
and Applied Mathematics

Illinois Institute of Technology

Copyright © 1996 by Thomas W. Christopher

You may reproduce this document in its entirety for personal use with the EULER compiler.
For educational use at a nonprofit institution, you may reproduce this document for the students
provided you inform the author of the course name and number, the institution name and ad-
dress, and provide electronic links (instructor’s e-mail and course home page URL) to be post-
ed on the web. Send the listing to the author at the address or URL given below.

Any other uses of this document, such as incorporation in a derived work or a compilation, re-
quire written permission.

The EULER compiler itself is public domain. Since it is in the public domain, it may be copied
and used without restriction. The author makes no warranties of any kind as to the correctness
of EULER or its suitability for any application. The responsibility for the use of the program
lies entirely with the user.

To contact the author

Thomas Christopher
Department of Computer Science and Applied Mathematics
Illinois Institute of Technology
IIT Center
Chicago IL 60616 USA

tc@charlie.cns.iit.edu
http://www.iit.edu/~tc

To obtain a up-to-date copy of this document, EULER, and the TCLL1 parser generator

http://www.iit.edu/~tc/toolsfor.htm

Release date: 3/22/97

Acknowledgement:

My thanks to Patricia Guilbeault for technical editing.

Copyright © 1996. Thomas W. Christopher iii

Contents

Chapter 1 An Experiment in Language Definition . . 7

Chapter 2 Informal Description of EULER 12
2.1 Identifiers . 12
2.2 Blocks . 12
2.3 Data Types . 13
 2.3.1 number . 13
 2.3.2 Boolean . 14
 2.3.3 symbol . 15
 2.3.4 list. 15
 2.3.5 reference. 16
 2.3.6 label. 17
 2.3.7 procedure. 17
 2.3.8 undefined. 18
2.4 Control Constructs . 18
2.5 Precedence of Operators . 19
2.6 I/O . 19
2.7 Comments . 19
2.8 Changes from the original EULER. 19
2.9 Syntax . 20

Chapter 3 An EULER Interpreter 23
3.1 The abstract machine . 23
 3.1.1 The abstract machine’s data structures 23
 3.1.2 Representation of data types . 24
 3.1.3 Operators. 24
 3.1.4 Blocks, variables, and assignments. 26
 3.1.5 Conditionals . 28
 3.1.6 Labels and gotos . 30
 3.1.7 Procedures calls and lists . 31
 3.1.8 Subscripting . 33
3.2 The interpreter. 34

Chapter 4 The EULER Translator 43
4.1 Parser . 43
4.2 Translator . 45

Chapter 5 Exercises . 58
5.1 Change the exponentiation operator 58
5.2 Change the symbol table. 58
5.3 2) Use relative block numbers 58
5.4 Peephole optimization. 59
5.5 Jump optimization. 59
5.6 Add a while-expression. 60
 5.6.1 Syntax . 60

LL(1) Parser Generator and Parser

iv Copyright © 1996. Thomas W. Christopher

 5.6.2 Semantics. 60
 5.6.3 Hints on implementation . 61
 5.6.3.1 Suggested translation: . 61
 5.6.3.2 Suggested compiler data structures:. 61

Copyright © 1996. Thomas W. Christopher v

List of Tables
Table 1 numeric functions . 14

Table 2 Boolean functions . 14

Table 3 symbol functions . 15

Table 4 list functions . 16

Table 5 reference functions . 16

Table 6 label functions . 17

Table 7 procedural functions . 18

Table 8 functions on the undef type . 18

Table 9 Number, out, and halt instructions. 25
Table 10 Load instructions. . 25
Table 11 Block, variable, and assignment instructions. 27
Table 12 Jump instructions . 29
Table 13 Label and goto instructions.. 31
Table 14 Procedures, calls, and lists. 32
Table 15 Subscripting instruction. 34
Table 16 Action routines. 47

LL(1) Parser Generator and Parser

vi Copyright © 1996. Thomas W. Christopher

An Experiment in Language Definition

Copyright © 1996. Thomas W. Christopher 7

Chapter 1 An Experiment in Language Definition

It was the mid-1960’s, and ALGOL 60 was a success, or at least, the ALGOL
60 Revised Report1 was a success. The language itself caught on mainly in Eu-
rope, leaving FORTRAN to the Americans. But the Report established stan-
dards for the definition of programming languages. It introduced BNF (Backus
Normal Form or Backus-Naur Form) as a way of writing context-free grammars
for programming languages. It defined the semantics of ALGOL 60 by using
English language text to describe the meanings of the productions. The meaning
of a program could be understood as a composition of the meanings of the
phrases of which it was composed. At least that was the theory.

There were problems, though. The ALGOL 60 grammar was not fully reduced:
it had nonterminals and productions solely for discussion but which could not
occur in actual derivations. Even with a clean grammar, compiler writers would
not have had an easy time. Efficient parsing techniques for context-free gram-
mars had not yet been developed. The semantic descriptions were not totally
clear and their implications were not fully understood. Compiler-writing was
still a new discipline. ALGOL 60 had language features that compiler writers
did not yet know how to implement. ALGOL 60’s problems inspired half a de-
cade of research.

For the most part, the research was successful. Now we define programming
languages using context-free grammars for which we have a number of linear
time parsing algorithms. We know how to implement block structure, how to
pass local procedures as parameters, and how to implement ALGOL 60’s noto-
rious call-by-name—and we know better than to equip programming languages
with call-by-name.

But what is still not clear is how we should specify the semantics of a program-
ming language. English text lacks the precision of mathematics, and researchers
envied mathematicians’ ability to write precise definitions and prove theorems.
Perhaps there is some mathematical way to define the semantics of program-
ming languages—or if not exactly mathematical, then at least some concise, for-
mal notation.

The ALGOL 68 Report attempted a more formal definition. The language AL-
GOL 68 was being designed at approximately the same time as EULER using
von Wijngaarden’s notation. One of the factors contributing to the failure of

1. Naur, P. (ed.) Revised report on the algorithmic language ALGOL 60. Comm. ACM 6 (Jan. 1963).

EULER

8 Copyright © 1996. Thomas W. Christopher

ALGOL 68 is that its report was published before any informal introduction.
Programmers looked at the ALGOL 68 Report and found such explanations as:

{ In rule a, ’ROWS’ reflects the number of trimscripts in the slice,
’ROWSETY’ the number of those which are trimmers and ’ROW-
WSETY’ the number of ’row of’ not involved in the indexer. In the
slices x2[i,j], x2[i,2:n], x2[i], these numbers are (2,0,0), (2,1,0) and
(1,0,1) respectively. Because of rules f and 7.1.1.u, 2:3@0, 2:n, 2:, :5
and :@0 are trimmers.}2

Programmers didn’t understand the Report and gave up on the language. The at-
tempt at a more formal definition worked against the success of the language.

Wirth and Weber attempted to create a formal method of defining programming
languages in their paper “EULER: A Generalization of ALGOL, and its Formal
Definition: Part I,” and “—Part II”3. They contrasted their approach to those
who were translating programs into the (calculus and to von Wijngaarden who
was working on a system that would be used in the definition of ALGOL 68.

Wirth and Weber pointed out that one language “can only be explained in terms
of another language which is already well understood.” They found fault with
the attempts to define programming languages in any terms other than program-
ming. After all, if the point of a programming language is to communicate to a
machine, what could be a more appropriate definition than one utilizing “ele-
mentary machine operations.”

Their approach is to define a language by its compiler, but not simply providing
a compiler as a black box upon which to perform experiments. The source code
of the compiler is provided for inspection to aid understanding.

They introduced the ALGOL-like programming language EULER and tested
their approach on it. They supplied semantics routines a compiler would exe-
cute during a parse of an EULER program. These routines manipulate a symbol
table and place abstract machine instructions into an array. They supplied an in-
terpreter for the abstract machine instructions.

Since they were defining the translator in terms of the actions the compiler takes
during a parse of a program, they had to specify the parsing algorithm so that
the order of actions would be completely clear. They devoted more than half of
Part I of their paper to defining simple precedence parsing which they used for
their compiler.

They assert that if one understands the language in which the translator and in-
terpreter are written and the order of reductions performed by the parser, then
one understands the meaning of an EULER program.

2. von Wijngaarden, A. (ed.), Mailloux, B. J., Peck, J. E. L., and Koster, C. H. A., Report on the Algorith-
mic Language ALGOL 68, Numerische Mathematik, 14, 79-218 (1969), page 168.

3. Communications of the ACM, vol. 9, numbers 1 and 2, (Jan. and Feb. 1966).

An Experiment in Language Definition

Copyright © 1996. Thomas W. Christopher 9

Their approach has a number of clear advantages: It defines a programming lan-
guage in terms a programmer is trained to understand. It proves it can be com-
piled. It makes it easier to port to a new machine.

Defining a language in terms of its compiler proves it can be compiled. ALGOL
60 had flaws in its designs that made compiling difficult. The ALGOL 60 de-
signers apparently thought that they were specifying call-by-reference when
they invented call-by-name. Dynamic own arrays require the implementer to
provide some sort of heap allocation, although no other feature in the language
can make use of a heap. Numeric statement labels complicate parameter pass-
ing—is this number an integer or a label? Or worse, is it a label that hasn’t been
declared yet? And can the subroutine use its parameter as both an integer and a
label?

These problems became apparent when implementers attempted to compile AL-
GOL 60. If the language had been defined in terms of its compiler, then the
problems would have been found by the language designers.

Wirth and Weber also point out that a language design based on a compiler
would aid in language porting: a new compiler for a new machine can be seen
to be correct by showing that the code generated is an “adaptation to particular
environmental conditions of the language definition itself.”

Defining a language by its compiler is not perfect, however. The compiler itself
can have flaws, especially if it is only for reference and is not actually execut-
able. Wirth and Weber had some slight flaws in their published EULER com-
piler:

• They are inconsistent in which field of an activation record is the static link
and which is the dynamic link.

• They use an incorrect value for the static link when creating a procedural
value.

• They need to push an initial activation record on the stack before running
the program.

• They really should write out a “halt” instruction at the end of the program.

If you’re going to define a language by its translation into another language, and
you want the definition to be clear, then the target language should be at least as
understandable as the source. The translator must itself be understandable. In
the case of EULER, the target language is an abstract machine language—
which is to say, the machine instructions for a fictitious computer. Some of the
abstract machine operations are high level, complex instructions; you need to
read the code of the interpreter to figure them out. So the interpreter needs to be
understandable. Care must be paid to the coding practices, the algorithms, and
the language they are written in.

Wirth and Weber wrote both the translator and the interpreter in EULER. EU-
LER was a reasonable choice for the time, although it would no longer be pre-
ferred. EULER lacks records with named fields, and EULER lacks looping

EULER

10 Copyright © 1996. Thomas W. Christopher

statements. Accessing fields by subscripting and coding loops with goto’s both
obscure their code. In fact, they themselves use a hidden representation of
records—created and accessed through function calls. They added three hidden
record types for references, program labels, and procedure closures. They give
names for procedures to create records of these types and procedures to extract
fields from the records. They require their type testing operations (isr, isl, and
isp) to recognize these record types.

Using EULER for the translator and interpreter was a way to show off their
technique for language definition, but it did leave some questions unanswered,
such as:

• How does arithmetic work? You see that an EULER “+” operator is trans-
lated into a “+” abstract machine instruction, which is interpreted by an EU-
LER “+” operator.

• How does subscripting work? It is defined in the interpreter by subscripting.

• How and where are lists allocated? Lists are created in the interpreter by
EULER operations that create lists. It is not explicitly stated that the lan-
guage needs a garbage collector, but it does need one.

Of course, if they had tried using a different implementation language, then they
would have had other problems. There really weren’t many good candidates at
the time. Neither FORTRAN nor ALGOL 60 had the necessary data structures.
Assembly language would have been too particular, verbose, and obscure. LISP
would probably have been the best choice.

As we redo their work, we have the same problem. If we use a low level lan-
guage such as C, our translator, interpreter, and run time system might be much
longer and considerably more obscure than theirs. Besides, C is not cleanly de-
fined itself. Instead, we use a very high level language, Icon. This opens us to
the criticism that we are defining a simple language in terms of a more complex
one. Moreover, Icon’s semantics are not carefully defined. There is publicly
available source code for Icon which can be consulted, but it is not intended as
a definition. And the source code for Icon is written in C, bringing us back to
the criticisms of C again.

Beyond specific problems with Wirth and Weber’s attempt, there is a more gen-
eral problem with defining a language in terms of its compiler: compilers may
specify too much. For example, the code generated by the EULER compiler ex-
ecutes statements and expressions strictly left-to-right. What about a language
where the execution order is not supposed to be specified? The compiler will
pick a particular evaluation order. If the compiler is the definition of the lan-
guage, then presumably the evaluation order must be the one chosen by the
compiler. If the compiler tries not to specify the order, say by choosing random-
ly, then is a random choice the standard? And what about the error recovery?
Are the error messages of any implementation required to be the same as the
definition? Must the error recovery be the same?

An Experiment in Language Definition

Copyright © 1996. Thomas W. Christopher 11

We keep inventing complex languages. The compiler for a complex language is
itself complex. Neither the compiler nor any other document will make under-
standing simple. Any complex definition will have bugs, inconsistencies, gaps,
and failure to meet intentions.

Perhaps the best we can do is have multiple definitions:

• An informal description of the language with a grammar and an accompa-
nying semantic description in English.

• A compiler.

• Suites of test programs that exercise all features of the language.

Each can aid in understanding the others, and the conflicts between them can
bring the bugs in the definition to light.

To see the efficacy of defining a language in terms of its compiler, we redo
Wirth and Weber’s definition of EULER by presenting an EULER compiler and
interpreter in Icon. Icon provides all the data structures we need. It provides a
garbage collector. And most importantly, we have an Icon system, so we can ac-
tually get the compiler and compiled programs to execute.

We generally follow Wirth and Weber’s code. We use LL(1) parsing rather than
their simple precedence technique, but we preserve the data structures and algo-
rithms of the translation and interpretation code.

First, we will present an informal description of EULER.

EULER

12 Copyright © 1996. Thomas W. Christopher

Chapter 2 Informal Description of EULER

2.1 Identifiers

Identifiers may be used to name variables, formal parameters, and statement la-
bels. The declaration of formal parameters will be described below in the sec-
tion on the procedure data type.

2.2 Blocks

A block has the form:

begin d; d; d; ... s; s;... s end

or

begin s; s; ... s end

where each d is a declaration and each s is a statement. Blocks permit local def-
initions of names. As in ALGOL and Pascal, names defined in an enclosing
block are known in enclosed blocks. Each name used must have a correspond-
ing declaration. If the name is declared in overlapping scopes, the declaration in
the innermost surrounding scope is the corresponding declaration. For example,

 1 begin new x;

 2 label y;

 3 begin new x;

 4 new z;

 5 x; (* corresponding declaration on line 3 *)

 6 y; (* corresponding declaration on line 2 *)

 7 z (* corresponding declaration on line 4 *)

 8 end;

 9 y: (* corresponding declaration on line 2 *)

10 x (* corresponding declaration on line 1 *)

11 end

The declarations of variables are written:

new id

The declarations of labels are written:

Informal Description of EULER

Copyright © 1996. Thomas W. Christopher 13

label id

Notice that only one identifier is declared per declaration.

A label L is defined, i.e. bound to a statement S, by the form

L : S

The label must be declared in the beginning of the block in which it is defined.

A variable may be assigned a new value by the expression:

id <- expr

2.3 Data Types

EULER provides the following data types:

• number, integer or real;

• Boolean, a logical value;

• symbol, a string of characters in quotes;

• list, a sequence of elements of any type;

• reference, address of a variable or element of a list;

• label, a program address;

• procedure, a procedure;

• undefined, a special value.

2.3.1 number

An integer constant is written as a string of digits, no sign. A real constant is
written as two nonempty strings of digits written with a "." in between, option-
ally followed by an exponent written with an "E" followed by an optional "-"
sign followed by an integer.

For example

1
1.0
10.0E-1

EULER

14 Copyright © 1996. Thomas W. Christopher

2.3.2 Boolean

A Boolean constant is written as "true" or "false".

Table 1 numeric functions

isn v returns true if v is a number.

abs e returns the absolute value of a number.

integer e rounds the operand of type number to the nearest integer.

- e returns the negative of e.

x + y addition

x - y subtraction

x * y multiplication

x / y real division

x div y integer division

x mod y integer modulus

x ** y exponentiation

x min y minimum of the two values

x max y maximum of the two values

x = y true if the value of x equals the value of y

x ~= y not equal

x < y less than

x <= y less than or equal to

x > y greater than

x >= y greater than or equal to

Table 2 Boolean functions

isb v returns true if v is a Boolean value, false otherwise.

logical v converts v to Boolean (Wirth and Weber don’t define how. We’ll use
0=false, otherwise true)

~ e returns the logical complement of e.

a and b evaluates a and returns false if a is false, otherwise evaluates and returns
the value of b; notice that the evaluation is short circuited.

Informal Description of EULER

Copyright © 1996. Thomas W. Christopher 15

2.3.3 symbol

A symbol constant is written as a string of characters enclosed in double quotes.
An enclosed double quote is written doubled. For example,

"""Huh?"" he said."

2.3.4 list

There are no list constants.

A list may be constructed by one of the forms:

(e1,e2,e3,...,en)
(e1,e2,e3,...,en ,)
()

each ei being an expression. This builds a list of length n, the ith element is ini-
tialized to the corresponding ei. Notice that you may include a final comma after
the last item and that you may create an empty list.

list n

will create a list of length n (n is an expression) with each element initialized to
the undefined value.

The elements of a list are numbered starting at 1. The ith element of a list may
be accessed by e[i], where e is an expression that evaluates to a list. e[i] can also
be assigned a value, e.g.

a <- (1,2,3);
a[1] <- a[2];

a or b evaluates a and returns true if a is true, otherwise evaluates and returns the
value of b; notice that the evaluation is short circuited.

x = y true if the value of x equals the value of y

x ~= y inequality

Table 2 Boolean functions

Table 3 symbol functions

isy v returns true if v is a symbol, false otherwise.

x = y true if the value of x equals the value of y

x ~= y inequality

EULER

16 Copyright © 1996. Thomas W. Christopher

will give the list

(2,2,3)

2.3.5 reference

A reference is the address of a variable, a formal parameter, or element of a list.
The @ operator will give you a reference. The assignment

x <- @ y;

will give x a reference to variable y. Thereafter

x . <- 5;

will assign the value 5 to variable y. The dot is a dereference operator. Another
example:

x <- list 2;

x[1] <- @x[2];

x[1]. <- "garf";

will yield a list of the form:

Table 4 list functions

isli v return true if v is a list, false otherwise.

length e return the length of the list e.

list e create a list of length e with each element initialized to undef.

tail e return the list e with the first element removed.

x = y true if x and y are pointers to the same list

x ~= y true if not the same list

e1 & e2 return the list resulting from concatenating the lists e1 and e2

Table 5 reference functions

isr v returns true if v is a reference, false otherwise.

(, "garf")

Informal Description of EULER

Copyright © 1996. Thomas W. Christopher 17

2.3.6 label

An identifier to be used as a label must be declared

label id

in the declarations part of the block the label occurs in. The label identifier is
associated with a statement in the usual way by the form

id : statement

The label identifier may be used in an expression, creating a label value bound
to the statement and the current environment, e.g.

begin label L;

...

i <- (1,L);

...

goto i[2];

...

L: ...

end;

2.3.7 procedure

A procedure is written

’ expr ’

or

’ d; d; ... d; expr ’

where each d is a formal declaration, written

formal id

which declares id to be the name of a formal parameter. The quoted procedure
yields a procedural value The procedural value must be assigned to a variable
to be used.

A procedure call is composed of a variable followed by a list of parameters in
parentheses:

var (...)

Table 6 label functions

isl v returns true if v contains a label value.

EULER

18 Copyright © 1996. Thomas W. Christopher

The variable, var, may be a list element.

The occurrence of a procedure causes the created procedural value to be bound
within the current environment. For example

addx <- ’formal y; x+y’;

assigns to variable addx a procedure that will take one parameter and return the
result of adding the value of variable x to it. The instance of variable x that will
be used is bound at the time the procedure is assigned to addx. Even if there is
a different variable x visible when addx is called, it will be the x visible where
the procedure was created that will be added.

The formal parameters are passed with a kind of call-by-constant-value mecha-
nism. The value of the actual parameter is passed. Within the procedure, the val-
ue assigned to a parameter may be used, but it may not be changed.

There is a strange anomaly: if a reference is passed, any access to the formal pa-
rameter will access the variable referenced. For example

bump <- ’formal x; x <- x + 1’; ...; bump(@a);

assigns a procedure to variable bump. When bump is called with a reference as
an argument, it increments the value of the referenced variable.

2.3.8 undefined

There is a special value representing "undefined". Variables are initialized to it.
The constant is written:

undef

2.4 Control Constructs

Control typically flows from one statement in a block to the next. Other than
procedure calls, there are two ways to affect the flow of control.

The if-expression is written:

if expr then expr else expr

The goto expression is written:

goto expr

The value of the expr following the goto must be a label.

Table 7 procedural functions

isp v returns true if v is a procedure.

Table 8 functions on the undef type

isu v returns true if v is undefined.

Informal Description of EULER

Copyright © 1996. Thomas W. Christopher 19

2.5 Precedence of Operators

The precedences of operators from highest to lowest are

isn isb isl isli isy isp isu length

tail abs integer real logical list

**

* / div mod

+ -

max min

= ~= < <= > >=

~

and

or

&

The precedence levels of expressions may be overridden by grouping subex-
pressions in rectangular brackets. Brackets are in EULER what parentheses are
in most languages.

a <- b - [x <- c + d] * 10;

2.6 I/O

2.7 Comments

Comments are enclosed in (* and *) and may be nested.

2.8 Changes from the original EULER

There are a number of differences between the version of EULER presented
here and that in the original paper:

• Symbols are an extension of Wirth and Weber’s definition. They apparently
intended a symbol to be a character rather than a string.

• The equality and inequality (= and ~=) are defined by Wirth and Weber to
apply only to integers. We apply them to Booleans and symbols as well.

• The original EULER writes goto as go to.

• The original EULER used characters not present in ASCII. We have made
these substitutions:

out expr transmits the value of the expression to the output medium.

in reads a single character, as a symbol, from the input.

ours original

undef Ω (omega).

EULER

20 Copyright © 1996. Thomas W. Christopher

• The original EULER did not define comments.

2.9 Syntax

Below is a grammar for EULER. It uses approximately the same symbols as the
grammar included in the paper, but it is simplified in three ways:

• the simple precedence parser used in the original EULER definition re-
quired pairs of names for some nonterminals, e.g. sum and sum-, term and
term- as in the following:

Since we are using a more powerful parsing algorithm, we are able to re-
place sum- with sum, term- with term and remove the renaming productions
sum → sum- and term → term-. We have done so throughout the grammar.

• The original EULER grammar includes productions to define numbers. The
semantic actions show how to compute the numeric values of the numbers.
In our compiler, the scanner recognizes numbers and the Icon run-time sys-
tem computes their values. These productions have been removed.

• As mentioned in the discussion of differences, we have made substitutions
in order to use the ASCII character set.

Here is the simplified original EULER grammar:

program → block
vardecl → new id

and ∧

or ∨

** ↑

div ÷

* ×

~= ≠

<= ≤

>= ≥

~ ¬

ours original

sum → sum- term → term-

sum- → sum- - term term- → term- * factor

sum- → sum- + term term- → term- / factor

sum- → - term term- → term- div factor

sum- → + term term- → term- mod factor

sum- → term term- → factor

Informal Description of EULER

Copyright © 1996. Thomas W. Christopher 21

fordecl → formal id
labdecl → label id
var → id
var → var [expr]
var → var .
logval → true
logval → false
reference → @ var
listhead → listhead expr ,
listhead → (
listN → listhead expr)
listN → listhead)
prochead → prochead fordecl ;
prochead → ’
procdef → prochead expr ’
primary → var
primary → var listN
primary → logval
primary → number
primary → symbol
primary → reference
primary → listN
primary → tail primary
primary → procdef
primary → undef
primary → [expr]
primary → in
primary → isb var
primary → isr var
primary → isl var
primary → isli var
primary → isy var
primary → isp var
primary → isu var
primary → abs primary
primary → length var
primary → integer primary
primary → real primary
primary → logical primary
primary → list primary
factor → primary
factor → factor ** primary
term → factor
term → term * factor
term → term / factor
term → term div factor
term → term mod factor
sum → term
sum → + term
sum → - term
sum → sum + term
sum → sum - term
choice → sum
choice → choice min sum
choice → choice max sum
relation → choice
relation → choice = choice
relation → choice ~= choice
relation → choice < choice

EULER

22 Copyright © 1996. Thomas W. Christopher

relation → choice <= choice
relation → choice > choice
relation → choice >= choice
negation → relation
negation → ~ relation
conjhead → negation and
conj → conjhead conj
conj → negation
disjhead → conj or
disj → disjhead disj
disj → conj
catena → catena & primary
catena → disj
truepart → expr else
ifclause → if expr then
expr → block
expr → ifclause truepart expr
expr → var <- expr
expr → goto primary
expr → out expr
expr → catena
stat → labdef stat
stat → expr
labdef → id :
blokhead → begin
blokhead → blokhead vardecl ;
blokhead → blokhead labdecl ;
blokbody → blokhead
blokbody → blokbody stat ;
block → blokbody stat end

An EULER Interpreter

Copyright © 1996. Thomas W. Christopher 23

Chapter 3 An EULER Interpreter

3.1 The abstract machine

We will discuss the EULER abstract machine and interpreter before discussing
the translator since understanding the translator requires understanding the ab-
stract machine instruction set, but the abstract machine can be understood alone.
Nevertheless, in our descriptions of the abstract machine instruction set, we will
include short EULER programs and their translations to show how the instruc-
tions are used.

3.1.1 The abstract machine’s data structures

The EULER abstract machine uses the following registers and data structures:

• S the stack, containing temporary values during expression evaluation and
pointers to activation records containing parameters and variables.

• i the stack pointer. In most other systems this would be named sp.

• mpmark pointer. This points to the position of the top activation record in
S. In many other systems, this would be named fp, for frame pointer, since
activation records are also called stack frames. An older name for stack
frame is mark stack control word, hence “mark pointer.”

• P program. This is a list of abstract machine instructions. Each machine
instruction is a list. The first element of the list is the opcode represented as
a string. The following elements, if present, contain the operands.

• k program counter, the index of the current instruction in P. In most sys-
tems this is called pc.

• fct formal count, a count of the number of formal parameters a procedure
requires. It is used to extend a parameter list with undefined values if too
few parameters were provided. It has no equivalent in most systems.

• heap (it has no name in their interpreter). List structures are allocated dy-
namically and are freed automatically when no longer accessible. The data
structure that allows this is a heap with garbage collection. The heap is hid-
den since they write their system in EULER and just allocate lists as they
need them.

EULER

24 Copyright © 1996. Thomas W. Christopher

3.1.2 Representation of data types

3.1.3 Operators

The program

begin

out 1+1

end

translates into:

EULER type Icon representation explanation

number Icon’s integer or real

Boolean record Logical(s) There are exactly two in-
stances of this record. They
are assigned to global vari-
ables:

 True:=Logical(“true”)

 False:=Logical(“false”)

symbol Icon’s string

list Icon’s list

reference record Reference(lst,pos) lst is a list

pos is an index in the list lst

label record Progref(mix,adr) mix is the index in S of the ac-
tivation record the label was
defined in.

adr is the address of the first
instruction of the labeled
statement in P.

procedure record procDescr(bln,mix,adr) bln is the block number of the
procedure (i.e. depth of nest-
ing at which it is to execute).

mix is the index in S of the ac-
tivation record for the proce-
dure’s surrounding scope.

adr is the address of the first
instruction of the procedure.

undefined Icon’s &null

An EULER Interpreter

Copyright © 1996. Thomas W. Christopher 25

1 begin

2 number 1

3 number 1

4 +

5 out

6 end

7 halt

We will wait until the next example to discuss begin and end. Here’s what
the other instructions tell the interpreter to do:

The binary operations are:

+ - * / div mod ** min max < <= > >= = ~= &

The unary operations are:

neg abs integer logical real isn isr isl isli isy
isp isu ~ length tail list value

Notice that most of the binary and unary abstract machine operations have ex-
actly the same names as the corresponding operations in EULER. We use this
fact to simplify the translator. There are two exceptions in the list: Unary minus
is translated into a neg instruction, “-” having already been used for the binary
minus. The operation “value” is usually implicit in the context in the source
program and not usually made explicit with the suffix “.” operator. EULER’s
unary plus operator has no abstract machine operation because it performs no
operation.

The instructions that load values are:

Table 9 Number, out, and halt instructions.

number v Push the number v onto the stack.

+ Add the two top values on the stack. Pop the top value off the
stack and add it to the new top of stack. The other binary oper-
ations behave similarly to +. In all, the top of the stack is the
right operand, the value beneath it is the left operand.

out Write the top value on the stack into the output. Don’t remove
it from the stack. The other unary operations behave similarly
to out. They replace the top stack element with the result of the
operation.

halt Cease execution.

Table 10 Load instructions.

number v Push the number v

EULER

26 Copyright © 1996. Thomas W. Christopher

3.1.4 Blocks, variables, and assignments

The program

begin new x; new y;

x <- 1;

y <- x+1;

out y

end

translates into

 1 begin

 2 new

 3 new

 4 @ 1,1

 5 number 1

 6 <-

 7 ;

 8 @ 2,1

 9 @ 1,1

10 value

11 number 1

12 +

13 <-

14 ;

15 @ 2,1

16 value

17 out

18 end

19 halt

logval v Push the logical value v

undef Push the undefined value

symbol v Push the symbol (string) v

in Push the next symbol (character) read from the input

Table 10 Load instructions.

An EULER Interpreter

Copyright © 1996. Thomas W. Christopher 27

Table 11 Block, variable, and assignment instructions.

begin Push a new activation record onto the stack. Assign mp the po-
sition of the activation record. In real implementations, the
fields of the activation record would be on the stack itself. Here
the activation record is a list and the stack S holds a pointer to it.

end Pop an activation record off the stack. The top of the stack has
the value computed by the block. The next element of the stack
has a pointer to the block’s activation record. The value re-
turned by the block is pushed down, replacing the pointer to the
activation record.

new A new instruction is generated for each variable declared. An
activation record contains a list with one element for each vari-
able. When the activation record is created, the list is empty.
The new instruction creates a variable by putting another ele-
ment on the variable list and initializing it to undefined.

@ on,bn The @ instruction creates a reference to a variable and pushes it
on the stack. The variable is at position on (ordinal number) in
the list of variables in the surrounding block with number bn.
A reference is an internal data type that allows the value of a
variable to be fetched and a new value to be assigned. (We will
discuss references below.)

value The value instruction examines the top element of the stack.
If it is a reference, then it takes the reference off the top of the
stack and replaces it with the value of the referenced variable
(i.e. dereferencing it) and examines it again. If it is a procedural
value, it calls the procedure passing it an empty parameter list,
deproceduring it. The value instruction will first try to deref-
erence and then try to deprocedure, in that order, accomplish-
ing neither, either, or both. Any value other than a reference or
a procedural value is left alone.

<- The assignment instruction, <-, finds a value on top of the
stack and a reference immediately beneath it. The assignment
instruction pops value and the reference off the stack, assigns
the value to the variable referenced, and pushes the value back
on the stack.

; The ; instruction pops the top value off the stack. EULER is an
expression language where every statement produces a value.
When executing a statement sequence, the value of each state-
ment but the last must be popped off the stack.

EULER

28 Copyright © 1996. Thomas W. Christopher

The activation records for blocks are as follows:

where

Activation records are chained together. The dynamic chain links each activa-
tion record to its caller, indicated by mp at the time the activation record was
created. The static chain links an activation record to the activation record for
the surrounding scope. Each activation record, therefore, contains two link
fields, one for each chain. The activation record pushed by begin has both its
static and dynamic link initialized to the same value, the value of mp on entry.

A variable always pushes a reference onto the stack. The context in which the
variable is used can cause its value to be fetched. In fact, almost everywhere the
compiler generates a value instruction following the variable. The two excep-
tions are on the left of an assignment operator, <-, and as the operand of the @,
both of which suppress the generation of the value instruction.

A reference is an internal data type in the run-time system. Internally, a refer-
ence contains a pointer to a list, L, and an index, j. The value instruction fetch-
es the contents L[j]. The <- instruction changes it. The “@ on,bn” instruction
searches the static chain for the activation record with block number bn and
pushes a reference to element on of its variable list.

3.1.5 Conditionals

The program

block number is the depth of nesting of the block and is used to find the cor-
rect activation record for a variable or parameter.

dynamic link a copy of mp at the time this block was entered.

static link points to the position in the S of the activation record of the
surrounding block. Searches for non-local variables use the
static links.

locals is a list of storage for procedure (formal) parameters and lo-
cal (new) variables.

return address has the index in the P array to return to, for procedure activa-
tion records. For begin/end block activation records, this
field is omitted.

block
number

dynamic
link

static
link

locals return
address

Activation record

Stack

variables or parameters

An EULER Interpreter

Copyright © 1996. Thomas W. Christopher 29

begin new x; new y; new z;

 if x and y or ~z then 1 else 2

end

translates into

 1 begin

 2 new

 3 new

 4 new

 5 @ 1,1

 6 value

 7 and 10

 8 @ 2,1

 9 value

10 or 14

11 @ 3,1

12 value

13 ~

14 then 17

15 number 1

16 else 18

17 number 2

18 end

19 halt

(If you try to run this, it will terminate with an undefined variable error. You
might want to try it out with assignments of trues and falses to the variables.)

The significant new instructions here are jump instructions.

Table 12 Jump instructions

else d The else instruction jumps unconditionally to instruction
P[d] i.e. it sets the program counter k to d.. It probably should
have been named jump.

then d The then instruction pops the top value from the stack. If the
value popped was false, it jumps to instruction P[d], i.e. it sets
the program counter k to d. If the value popped was true, it falls
through to the next instruction.

EULER

30 Copyright © 1996. Thomas W. Christopher

3.1.6 Labels and gotos

The program

begin label L1; label L2;

 goto L2;

L1:

 goto L1;

L2: 0

end

translates into

 1 begin

 2 label 10,1

 3 value

 4 goto

 5 ;

 6 label 6,1

 7 value

 8 goto

 9 ;

10 number 0

11 end

12 halt

and d The and instruction is a conditional branch designed to short-
circuit conditional expressions. The and instruction is generat-
ed after the left operand of an and operator and before the right.
It tests the top value on the stack, the value of the left operand.
If the value is false, it is clear that the value of the entire expres-
sion will be false; the and instruction sets the program counter
k to d, jumping to the instruction that follows the right subex-
pression with the false still on the top of the stack.

If the value atop the stack is true, then the value of the expres-
sion will be the value of the right hand side. The and instruc-
tion pops the top element off the stack and falls through to
evaluate the right hand side.

or d The or instruction is like the and instruction except that it re-
verses the significance of true and false. If the top of the stack
is true, the instruction sets the program counter k to d. If the top
value is false, it pops the value and falls through.

Table 12 Jump instructions

An EULER Interpreter

Copyright © 1996. Thomas W. Christopher 31

The value instruction following the label instruction performs no operation
and could be eliminated. It is there as a consequence of how the translator han-
dles variable identifiers.

3.1.7 Procedures calls and lists

The program

begin new bump; new a;

 bump <- ’formal x; x <- x + 1’;

 a <- 1;

 bump(@a);

 out a

end

translates into

 1 begin

 2 new

 3 new

 4 @ 1,1

 5 proc 16

 6 formal

 7 @ 1,2

 8 value

 9 @ 1,2

10 value

11 value

12 number 1

13 +

14 <-

15 endproc

Table 13 Label and goto instructions.

label pa,bn The label instruction pushes a program address value
onto the stack. In a block structured language, a label
must contain both an instruction address and an envi-
ronment. Operand pa gives the index in P of the instruc-
tion. Operand bn gives the number of the block in which
the label is defined. In the program address value, bn is
translated into the index in the stack of the activation
record with that block number.

goto The goto instruction pops a program address value off
the top of the stack, assigns its pa value to k (the pro-
gram counter) and sets mp and i (the stack pointer) from
its environment performing a block-structured goto.

EULER

32 Copyright © 1996. Thomas W. Christopher

16 <-

17 ;

18 @ 2,1

19 number 1

20 <-

21 ;

22 @ 1,1

23 @ 2,1

24) 1

25 call

26 ;

27 @ 2,1

28 value

29 out

30 end

31 halt

Table 14 Procedures, calls, and lists.

proc pa The proc instruction pushes a procedural value on the stack
and then jumps to the instruction at location pa. The instruc-
tions for the procedure immediately follow the proc instruc-
tion, so the jump is necessary to get past them. The procedural
value must contain both the address of the procedure’s code
and also an environment, the value to be placed in the static
link field of the procedure’s activation record. Since the pro-
cedure is local to the current environment, the value of mp is
saved as the environment. The procedural value also holds the
block number, that is, depth of nesting, of the procedure.

) n The) instruction creates an initialized list. It creates a list of n
elements and fills it with n elements removed from the stack.
The top element of the stack becomes the rightmost, nth, ele-
ment of the list.

An EULER Interpreter

Copyright © 1996. Thomas W. Christopher 33

3.1.8 Subscripting

The program

begin new x;

x <- (1,2);

out x[1]

end

translates into

 1 begin

 2 new

 3 @ 1,1

 4 number 1

 5 number 2

call The call instruction calls a procedure. The top element on
the stack is a list, the actual parameter list of the procedure.
The next-to-top element is a procedural value. The call in-
struction pops both elements, pushes an activation record for
the procedure, sets fct to zero, and jumps to the procedure’s en-
try.

The fields of the activation record are set as follows:

1 The block number is set from the procedural value.

2 The dynamic link is set to mp.

3 The static link is set from the environment field of the
procedural value.

4 The locals list is set to the actual parameter list.

5 The return address is set to the program counter, k.

formal One formal instruction is generated for each formal param-
eter declared. The purpose of the formal instruction is to ex-
tend the actual parameter list if it is shorter than the number of
formal parameters. The instruction increments fct. If fct is
larger than the length of the parameter list—and it can only be
larger by one—an undefined value is appended to the end of
the actual parameter list to make them equal.

endproc The endproc instruction behaves much like the end instruc-
tion. It finds the value computed by the procedure body on top
of the stack and the procedure’s activation record just beneath
it. It exits the procedure much like end exits a block, popping
the value and replacing the activation record with it. The mp
register is set to point back to the caller’s activation record.
The program counter, k, is set to the return address.

Table 14 Procedures, calls, and lists.

EULER

34 Copyright © 1996. Thomas W. Christopher

 6) 2

 7 <-

 8 ;

 9 @ 1,1

10 number 1

11]

12 value

13 out

14 end

15 halt

3.2 The interpreter

The interpreter consists of the usual instruction fetch/execute cycle implement-
ed as a case expression in a loop. The Icon code for the EULER interpreter fol-
lows.

Notes on the interpreter:

Line 2 declares the abstract machine’s registers and storage. S is the stack. P, the program
array, is declared in the translator.

Lines 4-6 declares EULER’s new data types.

Line 4 declares the reference data type. Field lst is a list; field pos is an integer giving a
position in the list.

Line 5 declares a program reference, which is to say, a label. Field mix is the index in S of
the activation record the label is bound within. Field adr is the address in P of the in-
struction. When the program goes to the program reference, mix is loaded into both the
frame pointer, mp, and the stack pointer, i; adr is loaded into the program counter, k.

Line 6 declares a procedure descriptor, more commonly called a closure. Field bln is the
block number of the procedure; mix, the index in S of its activation record; adr, the ad-
dress of its first instruction in P.

Lines 8-17 construct a reference from a block number and an ordinal number.

Lines 19-28 construct a program reference from a program address (an index in P) and a
block number.

Lines 30-33 dereference—fetch the value to which a reference points. If the operand is not
a reference, it is returned unaltered.

Lines 35-42 assign a value to a referenced variable.

Lines 44-391 are the interpreter itself.

Line 46 allocates a fixed-sized stack. This follows Wirth and Weber’s code. It might be bet-
ter to try using Icon’s put and pull.

Line 47 starts the stack pointer at the bottom of the stack.

Table 15 Subscripting instruction.

] The] instruction performs subscripting. It should find a nu-
meric value, j, on top of the stack and a reference to a variable
containing a list, L, just beneath it on the stack. It removes both
and pushes back a reference to the indicated element of the
list, L[j].

An EULER Interpreter

Copyright © 1996. Thomas W. Christopher 35

Lines 48-49 push an initial activation record (block number zero) on the stack. This is not
done in the original EULER paper, but begin needs it.

Line 50 sets the program counter to start execution at the first instruction.

Lines 51-394 is the main instruction fetch/execute loop. P[k] is the instruction. P[k][1] is
the op-code. Notice that the program counter (k) is incremented at the end of the in-
struction execution at line 393. Jumps will bypass the increment by executing next.

Lines 54-109 are numeric binary operators.

Lines 110-134 are unary operators.

Lines 151-182 are type test operators.

Lines 183-198 are primitive versions of the I/O operators. They need improvement.

Lines 199-230 are numeric relational operators.

Lines 231-238 test equality or inequality. In the original EULER, these are numeric com-
parisons, but we’ve extended them to perform an identity test so that they can check
whether two lists are actually the same list or whether two symbols are the same
strings. They really should be extended further to test references, program references,
and procedural values for equality.

Lines 239-250 are conditional jumps.

Lines 290-293 load constant values on the stack. Programmed in Icon, only one such in-
struction is really needed.

Lines 306-308 allocate a new local variable and initialize it to undef.

Lines 309-312 declare a new formal parameter. Variable fct keeps a count of the number of
formal parameters the procedure has declared. If fct is greater than the length of the
formal parameter list, a formal parameter is allocated and initialized to undef.

 1 # Euler Interpreter
 2 global S,k,i,mp,fct
 3
 4 record Reference(lst,pos)
 5 record Progref(mix,adr)
 6 record procDescr(bln,mix,adr)
 7
 8 procedure reference(on,bn)
 9 local j
 10 j := mp
 11 while j>0 do {
 12 if S[j][1] = bn then return Reference(S[j][4],on)
 13 j := S[j][3]#static link
 14 }
 15 RTError("dangling reference")
 16 fail
 17 end
 18
 19 procedure progref(pa,bn)
 20 local j
 21 j := mp
 22 while j>0 do {
 23 if S[j][1] = bn then return Progref(j,pa)
 24 j := S[j][3]#static link
 25 }
 26 RTError("dangling reference")
 27 fail
 28 end

EULER

36 Copyright © 1996. Thomas W. Christopher

 29
 30 procedure deref(x)
 31 if type(x) ~== "Reference" then return x
 32 return x.lst[x.pos]
 33 end
 34
 35 procedure assignThroughRef(x,v)
 36 local j
 37 if type(x) ~== "Reference" then {
 38 RTError("reference needed on left of ’<-’")
 39 fail
 40 }
 41 return x.lst[x.pos] := v
 42 end
 43
 44 procedure interpreter()
 45 local l,r,t
 46 S := list(500)
 47 i := 1
 48 S[1] := [0,0,0,[]]#outer, empty activation record
 49 mp := 1
 50 k := 1
 51 repeat {
 52 if k>*P then return
 53 case P[k][1] of {
 54 "+": {
 55 if not (l:=numeric(S[i-1])) then
 56 return RTError("numeric required")
 57 if not (r:=numeric(S[i])) then
 58 return RTError("numeric required")
 59 i -:= 1
 60 S[i] := l + r
 61 }
 62 "-": {
 63 if not (l:=numeric(S[i-1])) then
 64 return RTError("numeric required")
 65 if not (r:=numeric(S[i])) then
 66 return RTError("numeric required")
 67 i -:= 1
 68 S[i] := l - r
 69 }
 70 "*": {
 71 if not (l:=numeric(S[i-1])) then
 72 return RTError("numeric required")
 73 if not (r:=numeric(S[i])) then
 74 return RTError("numeric required")
 75 i -:= 1
 76 S[i] := l * r
 77 }
 78 "/": {
 79 if not (l:=real(S[i-1])) then
 80 return RTError("numeric required")
 81 if not (r:=real(S[i])) then
 82 return RTError("numeric required")
 83 i -:= 1
 84 S[i] := l / r
 85 }
 86 "div":{
 87 if not (l:=integer(S[i-1])) then

An EULER Interpreter

Copyright © 1996. Thomas W. Christopher 37

 88 return RTError("numeric required")
 89 if not (r:=integer(S[i])) then
 90 return RTError("numeric required")
 91 i -:= 1
 92 S[i] := l / r
 93 }
 94 "mod":{
 95 if not (l:=integer(S[i-1])) then
 96 return RTError("numeric required")
 97 if not (r:=integer(S[i])) then
 98 return RTError("numeric required")
 99 i -:= 1
 100 S[i] := l % r
 101 }
 102 "**":{
 103 if not (l:=numeric(S[i-1])) then
 104 return RTError("numeric required")
 105 if not (r:=numeric(S[i])) then
 106 return RTError("numeric required")
 107 i -:= 1
 108 S[i] := l ^ r
 109 }
 110 "neg":{
 111 if not (r:=numeric(S[i])) then
 112 return RTError("numeric required")
 113 S[i] := - r
 114 }
 115 "abs":{
 116 if not (r:=numeric(S[i])) then
 117 return RTError("numeric required")
 118 S[i] := abs(r)
 119 }
 120 "integer":{
 121 if not (r:=numeric(S[i])) then
 122 return RTError("numeric required")
 123 S[i] := integer(r)
 124 }
 125 "logical":{
 126 if not (r:=numeric(S[i])) then
 127 return RTError("numeric required")
 128 S[i] := if r ~= 0 then True else False
 129 }
 130 "real":{
 131 if type(r:=S[i])~=="Logical" then
 132 return RTError("logical required")
 133 S[i] := if r === True then 1 else 0
 134 }
 135 "min":{
 136 if not (l:=numeric(S[i-1])) then
 137 return RTError("numeric required")
 138 if not (r:=numeric(S[i])) then
 139 return RTError("numeric required")
 140 i -:= 1
 141 S[i] := if l < r then l else r
 142 }
 143 "max":{
 144 if not (l:=numeric(S[i-1])) then
 145 return RTError("numeric required")
 146 if not (r:=numeric(S[i])) then

EULER

38 Copyright © 1996. Thomas W. Christopher

 147 return RTError("numeric required")
 148 i -:= 1
 149 S[i] := if l > r then l else r
 150 }
 151 "isn":{
 152 r:=deref(S[i])
 153 S[i] := if numeric(r) then True else False
 154 }
 155 "isb":{
 156 r:=deref(S[i])
 157 S[i] := if type(r)=="Logical" then True else False
 158 }
 159 "isr":{
 160 r:=deref(S[i])
 161 S[i] := if type(r)=="Reference" then True else False
 162 }
 163 "isl":{
 164 r:=deref(S[i])
 165 S[i] := if type(r)=="Progref" then True else False
 166 }
 167 "isli":{
 168 r:=deref(S[i])
 169 S[i] := if type(r)=="list" then True else False
 170 }
 171 "isy":{
 172 r:=deref(S[i])
 173 S[i] := if type(r)=="string" then True else False
 174 }
 175 "isp":{
 176 r:=deref(S[i])
 177 S[i] := if type(r)=="procDescr" then True else False
 178 }
 179 "isu":{
 180 r:=deref(S[i])
 181 S[i] := if /r then True else False
 182 }
 183 "in":{
 184 i+:=1
 185 S[i]:=reads()
 186 }
 187 "out":{
 188 r:=deref(S[i])
 189 case type(r) of {
 190 "Logical": write(r.s)
 191 "null": write("undef")
 192 "Reference":write("Reference(",image(r.lst),",",r.pos,")")
 193 "Progref":write("Program_Reference(",r.mix,",",r.adr,")")
 194 "procDescr":write("Procedure_Descriptor(",
 195 r.bln,",",r.mix,",",r.adr,")")
 196 default: write(r)
 197 }
 198 }
 199 "<=":{
 200 if not (l:=numeric(S[i-1])) then
 201 return RTError("numeric required")
 202 if not (r:=numeric(S[i])) then
 203 return RTError("numeric required")
 204 i -:= 1
 205 S[i] := if l <= r then True else False

An EULER Interpreter

Copyright © 1996. Thomas W. Christopher 39

 206 }
 207 "<":{
 208 if not (l:=numeric(S[i-1])) then
 209 return RTError("numeric required")
 210 if not (r:=numeric(S[i])) then
 211 return RTError("numeric required")
 212 i -:= 1
 213 S[i] := if l < r then True else False
 214 }
 215 ">=":{
 216 if not (l:=numeric(S[i-1])) then
 217 return RTError("numeric required")
 218 if not (r:=numeric(S[i])) then
 219 return RTError("numeric required")
 220 i -:= 1
 221 S[i] := if l >= r then True else False
 222 }
 223 ">":{
 224 if not (l:=numeric(S[i-1])) then
 225 return RTError("numeric required")
 226 if not (r:=numeric(S[i])) then
 227 return RTError("numeric required")
 228 i -:= 1
 229 S[i] := if l > r then True else False
 230 }
 231 "=":{
 232 i -:= 1
 233 S[i] := if S[i] === S[i+1] then True else False
 234 }
 235 "~=":{
 236 i -:= 1
 237 S[i] := if S[i] ~=== S[i+1] then True else False
 238 }
 239 "and":{
 240 if type(r:=S[i])~=="Logical" then
 241 return RTError("logical required")
 242 if r===True then i-:=1
 243 else { k:=P[k][2]; next }
 244 }
 245 "or":{
 246 if type(r:=S[i])~=="Logical" then
 247 return RTError("logical required")
 248 if r===True then { k:=P[k][2]; next }
 249 else i-:=1
 250 }
 251 "~":{
 252 if type(r:=S[i])~=="Logical" then
 253 return RTError("logical required")
 254 S[i] := if r===True then False else True
 255 }
 256 "then":{
 257 if type(r:=S[i])~=="Logical" then
 258 return RTError("logical required")
 259 i-:=1
 260 if r===False then { k:=P[k][2]; next }
 261 }
 262 "else":{
 263 k:=P[k][2]
 264 next

EULER

40 Copyright © 1996. Thomas W. Christopher

 265 }
 266 "length": {
 267 r:=deref(S[i])
 268 if type(r)~=="list" then
 269 return RTError("list required")
 270 S[i] := *r
 271 }
 272 "tail": {
 273 if type(r:=S[i])~=="list" then
 274 return RTError("list required")
 275 if *r<1 then
 276 return RTError("non-empty list required")
 277 S[i] := r[2:0]
 278 }
 279 "&":{
 280 if not (type(l:=S[i-1])==type(r:=S[i])=="list") then
 281 return RTError("list required")
 282 i -:= 1
 283 S[i] := l ||| r
 284 }
 285 "list":{
 286 if not (r:=numeric(S[i])) then
 287 return RTError("numeric required")
 288 S[i] := list(r)
 289 }
 290 "number"|"logval"|"symbol" : {
 291 i +:= 1
 292 S[i] := P[k][2]
 293 }
 294 "undef": {
 295 i +:= 1
 296 S[i] := &null
 297 }
 298 "label": {
 299 i +:= 1
 300 S[i] := progref(P[k][2],P[k][3])
 301 }
 302 "@":{
 303 i +:= 1
 304 S[i] := reference(P[k][2],P[k][3])
 305 }
 306 "new":{
 307 put(S[mp][4],&null)
 308 }
 309 "formal": {
 310 fct +:= 1
 311 if fct > *S[mp][4] then put(S[mp][4],&null)
 312 }
 313 "<-":{
 314 i -:= 1
 315 S[i] := assignThroughRef(S[i],S[i+1]) | fail
 316 }
 317 ";": {
 318 i -:= 1
 319 }
 320 "]": {
 321 if not (r:=numeric(S[i])) then
 322 return RTError("numeric required")
 323 if r <= 0 then

An EULER Interpreter

Copyright © 1996. Thomas W. Christopher 41

 324 return RTError("subscript must be positive")
 325 i -:= 1
 326 l := deref(S[i])
 327 if type(l)~=="list" then
 328 return RTError("list required")
 329 if r > *l then return RTError("subscript too large")
 330 S[i] := Reference(l,r)
 331 }
 332 "begin": {
 333 i +:= 1
 334 S[i] := [S[mp][1]+1,mp,mp,[]]
 335 mp := i
 336 }
 337 "end":{
 338 t := S[mp][2]
 339 S[mp] := S[i]
 340 i := mp
 341 mp := t
 342 }
 343 "proc":{
 344 i +:= 1
 345 S[i] := procDescr(S[mp][1]+1,mp,k)
 346 k := P[k][2]
 347 next
 348 }
 349 "value": {
 350 S[i] := t := deref(S[i])
 351 if type(t)=="procDescr" then {
 352 fct := 0
 353 S[i] := [t.bln,mp,t.mix,[],k]
 354 mp := i
 355 k := t.adr
 356 }
 357 }
 358 "call": {
 359 i -:= 1
 360 t := deref(S[i])
 361 if type(t)~=="procDescr" then
 362 return RTError("procedure required")
 363 fct := 0
 364 S[i] := [t.bln,mp,t.mix,S[i+1],k]
 365 mp := i
 366 k := t.adr
 367 }
 368 "endproc": {
 369 k := S[mp][5]
 370 t := S[mp][2]
 371 S[mp] := S[i]
 372 i := mp
 373 mp := t
 374 }
 375 "halt":{
 376 break
 377 }
 378 "goto":{
 379 if type(S[i])~=="Progref" then
 380 return RTError("label required")
 381 mp := S[i].mix
 382 k := S[i].adr

EULER

42 Copyright © 1996. Thomas W. Christopher

 383 i := mp
 384 next
 385 }
 386 ")": {
 387 i +:= 1
 388 r := S[i-P[k][2]:i]
 389 i -:= P[k][2]
 390 S[i] := r
 391 }
 392 }
 393 k+:=1
 394 }
 395 return
 396 end
 397
 398 procedure RTError(s)
 399 stop(k," ",P[k][1]," --- ",s)
 400 end
 401

The EULER Translator

Copyright © 1996. Thomas W. Christopher 43

Chapter 4 The EULER Translator

4.1 Parser

Here is a grammar for EULER. The many levels of operators in EULER and the
labeled statements caused the major difficulties in putting the grammar into
LL(1) form.

start : program .

program = block ENDPROG!.

vardecl = new id NEWDECL! .

fordecl = formal id FORMALDECL! .

labdecl = label id LABELDECL! .

var = id VARID! { "[" expr "]" SUBSCR! | "." DOT! } .

logval = true LOGVALTRUE! .

logval = false LOGVALFALSE! .

number = realN | integerN.

reference = "@" var REFERENCE! .

listhead -> "(" LISTHD1!

listhead -> listhead expr "," LISTHD2!

listN -> listhead ")" LISTN1!

listN -> listhead expr ")" LISTN2!

listN = "(" LISTHD1! (")" LISTN1! | expr listTl) .

listTl = ")" LISTN2! | "," LISTHD2! (expr listTl | ")" LISTN1!) .

prochead = "’" PROCHD! { fordecl ";" PROCFORDECL! } .

procdef = prochead expr "’" PROCDEF! .

primary = var (listN CALL! | VALUE!) | primary1 .

primary1 = logval LOADLOGVAL! | number LOADNUM! |

symbol LOADSYMB!| reference |

listN | tail primary UOP! | procdef |

undef LOADUNDEF! | "[" expr "]" PARENS! | in INPUT! |

isb var UOP! | isn var UOP! | isr var UOP! |

isl var UOP! | isli var UOP! | isy var UOP! |

isp var UOP! | isu var UOP! | abs primary UOP! |

length var UOP! | integer primary UOP! |

real primary UOP! | logical primary UOP! | list primary UOP! .

factor = primary factortail.

factortail = { "**" primary BOP! } .

EULER

44 Copyright © 1996. Thomas W. Christopher

term = factor termtail.

termtail = { "*" factor BOP! | "/" factor BOP! |

div factor BOP! | mod factor BOP! } .

sum = ("+" term UPLUS! | "-" term NEG! | term) sumtail.

sumtail = { "+" term BOP! | "-" term BOP! } .

choice = sum choicetail.

choicetail = { min sum BOP! | max sum BOP! } .

relation = choice relationtail.

relationtail = ["=" choice BOP! | "~=" choice BOP!

| "<" choice BOP! | "<=" choice BOP!

| ">" choice BOP! | ">=" choice BOP!] .

negation = "~" relation UOP! | relation .

conj = negation conjtail.

conjtail = [and CONJHD! conj CONJ!].

disj = conj disjtail.

disjtail = [or DISJHD! disj DISJ!] .

catenatail = { "&" primary BOP! }.

truepart = expr else TRUEPT! .

ifclause = if expr then IFCLSE! .

expr = var exprtail | expr1.

exprtail = "<-" expr BOP! |

(listN CALL! | VALUE!)

factortail

termtail

sumtail

choicetail

relationtail

conjtail

disjtail

catenatail .

expr1 = block .

expr1 = ifclause truepart expr IFEXPR! .

expr1 = goto primary UOP! .

expr1 = out expr UOP! .

expr1 =primary1

factortail

termtail

sumtail

The EULER Translator

Copyright © 1996. Thomas W. Christopher 45

choicetail

relationtail

conjtail

disjtail

catenatail .

expr1 = ("+" term UPLUS! | "-" term NEG!)

sumtail

choicetail

relationtail

conjtail

disjtail

catenatail .

expr1 = "~" relation UOP! conjtail disjtail catenatail .

stat = expr1

| id (":" LABDEF! stat LABSTMT!

| VARID! { "[" expr "]" SUBSCR! | "." DOT! }

exprtail) .

block = begin BEGIN!

{ vardecl ";" BLKHD! | labdecl ";" BLKHD!}

stat { ";" BLKBODY! stat } end BLK! .

4.2 Translator

The translator uses a semantics stack. Whenever the parser recognizes a token,
it pushes it onto the semantics stack. Whenever the parser encounters an action
symbol, it executes a routine to generate code. The action routine removes a
fixed number of values from the semantics stack, performs its action, and push-
es a single value back on the semantics stack. The general format of an action
routine is:

1 procedure <<Action name>>()
2 V:=popSem(<<Length of right hand side>>)
3 if errorFound:=anyError(V) then return pushSem(errorFound)
4 <<Body of action>>
5 pushSem(<<Semantic value of left hand side>>)
6 return
7 end

Line 2 removes values from the semantics stack, placing them in the V list. Line
3 tests to see if any subphrase was in error, and if so skips generating code and
propagates the error upwards. Line 4 represents all the lines of the body of the
action routine. Line 5 pushes the semantics value computed for the entire phrase
back on the stack.

EULER

46 Copyright © 1996. Thomas W. Christopher

The following lists the meanings of some of the variables used in the code:

V array of semantic values of symbols on RHS, e.g.

P program produced by translator

k index into P

N list of identifiers & associated data

n index into N

m index into N

bn block number

on ordinal number

The translator places the code it generates in list P. The code is generated strict-
ly left-to-right, bottom-up. Each generated instruction is itself a list. The first el-
ement of the instruction is the name of the instruction—represented as a
character string. Any subsequent elements are the operand fields.

There are various forms of jump instructions that jump forward in the code.
Their destination is not known when the instruction is generated, so the destina-
tion is back patched into the instructions later. In some cases, like or, and,
then, and else, the destination field is initialized to &null, the address of the
instruction is pushed on the semantics stack as the value of the phrase that gen-
erated it, and the actual address is inserted by the action routine for the enclosing
phrase. Instruction or is generated in action routine DISJHD (lines 303-309)
and backpatched in DISJ (lines 311-317). Instruction and is handled similarly
to or. Instruction then is generated in action routine IFCLSE (lines 327-333)
and else in TRUEPT (lines 319-325); they are both backpatched in IFEXPR
(lines 335-342).

In the case of var -> id where the identifier names a label, the translator gener-
ates a label instruction. The label instruction must contain the program ad-
dress of the label, but the label might not be defined yet. In that case, the label
instruction is placed on a linked list attached to the symbol table entry for the
label. When the label is defined, all instructions on the list are patched to point
to its location. The label is entered into the symbol table in action routine LA-
BELDECL (lines 66-73). The label instruction is generated in VARID (lines
75-99). The label is defined in LABDEF (lines 351-373), where the address of
the label is found and any forward references to it are backpatched.

The translator keeps its symbol table in list N. The symbol table is searched by
a linear scan.

Each symbol entry has four fields:

relation → choice <= choice

V[1] V[2] V[3]

id bn on type

The EULER Translator

Copyright © 1996. Thomas W. Christopher 47

where

To see symbols being inserted into N, see action routines NEWDECL, FORM-
ALDECL, and LABELDECL (lines 44-73). To see symbols being consulted in
the symbol table, see action routines VARID (lines 75-99) and LABDEF (lines
351-373).

The symbol table is block-structured. At any point in the program, each enclos-
ing block has a contiguous section of the N stack containing its symbols. Each
section begins with a marker

where link points to (actually, is the index of) the marker for the surrounding
block. Variable m is the index of the top marker on the N stack.

To see markers being inserted in N, look at the action routines PROCHD (lines
175-185) and BEGIN (lines 375-386). To see markers being removed, look at
PROCDEF (lines 187-197) and BLK (lines 403-412).

The following table shows the original grammar with the associated action rou-
tines and where they occur in the code.

id is the name of the entry, a string.

bn is the block number where the entry is defined.

on is an ordinal number—for a variable or a formal parameter,
its position in the list of formals and variables in its block;
for a label, either its position in the P array, or the position
of the first instruction in a list of forward references to the
label.

type is “formal” for a formal parameter; “new” for a variable;
“label” for a label that has already been assigned a position
in the array P; and undef for a label that is not yet defined.

undef link

Table 16 Action routines

Production Action Lines

program → block ENDPROG 39-42

vardecl → new id NEWDECL 44-53

fordecl → formal id FORMALDECL 55-64

labdecl → label id LABELDECL 66-73

var → id VARID 75-99

var → var [expr] SUBSCR 101-107

var → var . DOT 109-115

logval → true LOGVALTRUE 117-122

EULER

48 Copyright © 1996. Thomas W. Christopher

logval → false LOGVALFALSE 124-129

reference → @ var REFERENCE 131-136

listhead → listhead expr , LISTHD2 138-143

listhead → (LISTHD1 145-150

listN → listhead expr) LISTN2 152-158

listN → listhead) LISTN1 160-166

prochead → prochead fordecl ; PROCFORDECL 168-173

prochead → ’ PROCHD 175-185

procdef → prochead expr ’ PROCDEF 187-197

primary → var VALUE 199-205

primary → var listN CALL 207-213

primary → logval LOADLOGVAL 215-221

primary → number LOADNUM 223-229

primary → symbol LOADSYMB 231-237

primary → reference

primary → listN

primary → tail primary UOP 256-262

primary → procdef

primary → undef LOADUNDEF 239-242

primary → [expr] PARENS 244-249

primary → in INPUT 251-254

primary → isb var UOP 256-262

primary → isr var UOP 256-262

primary → isl var UOP 256-262

primary → isli var UOP 256-262

primary → isy var UOP 256-262

primary → isp var UOP 256-262

primary → isu var UOP 256-262

primary → abs primary UOP 256-262

Table 16 Action routines

Production Action Lines

The EULER Translator

Copyright © 1996. Thomas W. Christopher 49

primary → length var UOP 256-262

primary → integer primary UOP 256-262

primary → real primary UOP 256-262

primary → logical primary UOP 256-262

primary → list primary UOP 256-262

factor → primary

factor → factor ** primary BOP 264-270

term → factor

term → term * factor BOP 264-270

term → term / factor BOP 264-270

term → term div factor BOP 264-270

term → term mod factor BOP 264-270

sum → term

sum → + term UPLUS 272-277

sum → - term NEG 279-285

sum → sum + term BOP 264-270

sum → sum - term BOP 264-270

choice → sum

choice → choice min sum BOP 264-270

choice → choice max sum BOP 264-270

relation → choice

relation (choice = choice BOP 264-270

relation → choice ~= choice BOP 264-270

relation → choice < choice BOP 264-270

relation → choice <= choice BOP 264-270

relation → choice > choice BOP 264-270

relation → choice >= choice BOP 264-270

negation → relation

Table 16 Action routines

Production Action Lines

EULER

50 Copyright © 1996. Thomas W. Christopher

The following is the Icon code for the EULER translator:

 1 #EULER semantics routines
 2

negation → ~ relation UOP 256-262

conjhead → negation and CONJHD 287-293

conj → conjhead conj CONJ 295-301

conj → negation

disjhead → conj or DISJHD 303-309

disj → disjhead disj DISJ 311-317

disj → conj

catena → catena & primary BOP 264-270

catena → disj

truepart → expr else TRUEPT 319-325

ifclause → if expr then IFCLSE 327-333

expr → block

expr → ifclause truepart expr IFEXPR 335-342

expr → var <- expr BOP 264-270

expr → goto primary UOP 256-262

expr → out expr UOP 256-262

expr → catena

stat → labdef stat LABSTMT 344-349

stat → expr

labdef → id : LABDEF 351-373

blokhead → begin BEGIN 375-386

blokhead → blokhead vardecl ; BLKHD 388-393

blokhead → blokhead labdecl ; BLKHD 388-393

blokbody → blokhead

blokbody → blokbody stat ; BLKBODY 395-401

block → blokbody stat end BLK 403-412

Table 16 Action routines

Production Action Lines

The EULER Translator

Copyright © 1996. Thomas W. Christopher 51

 3 record Logical(s)
 4 global True, False
 5 global P,N,n,m,bn,on,V,semantics
 6
 7 procedure initTrans()
 8 P:=[]
 9 N:=list(100)
 10 bn:=0
 11 on:=0
 12 n:=0
 13 m:=0
 14 True := Logical("true")
 15 False := Logical("false")
 16 return
 17 end
 18
 19 procedure pushCTError(M[])
 20 every writes(!M)
 21 write()
 22 push(semanticsStack,&null)
 23 return
 24 end
 25
 26 procedure showCode()
 27 local i,h
 28 h:=*string(*P)
 29 every i:=1 to *P do {
 30 writes(right(i,h), " ", left(P[i][1],10))
 31 every writes(image(P[i][2 to *P[i]-1]),",")
 32 if P[i][1]=="logval" then writes(P[i][2].s)
 33 else writes(image(P[i][1<*P[i]]))
 34 write()
 35 }
 36 return
 37 end
 38
 39 procedure ENDPROG()
 40 put(P,["halt"])
 41 return
 42 end
 43
 44 procedure NEWDECL()
 45 V:=popSem(2)
 46 if errorFound:=anyError(V) then return pushSem(errorFound)
 47 put(P,["new"])
 48 on+:=1
 49 n+:=1
 50 N[n] := [V[2].body,bn,on,"new"]
 51 pushSem(&null)
 52 return
 53 end
 54
 55 procedure FORMALDECL()
 56 V:=popSem(2)
 57 if errorFound:=anyError(V) then return pushSem(errorFound)
 58 put(P,["formal"])
 59 on+:=1
 60 n+:=1
 61 N[n] := [V[2].body,bn,on,"formal"]

EULER

52 Copyright © 1996. Thomas W. Christopher

 62 pushSem(&null)
 63 return
 64 end
 65
 66 procedure LABELDECL()
 67 V:=popSem(2)
 68 if errorFound:=anyError(V) then return pushSem(errorFound)
 69 n+:=1
 70 N[n] := [V[2].body,bn,&null,&null]
 71 pushSem(&null)
 72 return
 73 end
 74
 75 procedure VARID()
 76 local t
 77 V:=popSem(1)
 78 if errorFound:=anyError(V) then return pushSem(errorFound)
 79 t:=n
 80 while t>=1 do {
 81 if N[t][1]===V[1].body then break
 82 t -:= 1
 83 }
 84 if t<1 then
 85 return pushCTError("identifier ",V[1].body," undeclared")
 86 if N[t][4]==="new" then {
 87 put(P, ["@",N[t][3],N[t][2]])
 88 } else if N[t][4]==="label" then {
 89 put(P, ["label",N[t][3],N[t][2]])
 90 } else if N[t][4]==="formal" then {
 91 put(P, ["@",N[t][3],N[t][2]])
 92 put(P, ["value"])
 93 } else {
 94 put(P, ["label",N[t][3],N[t][2]])
 95 N[t][3] := *P
 96 }
 97 pushSem(&null)
 98 return
 99 end
 100
 101 procedure SUBSCR()
 102 V:=popSem(4)
 103 if errorFound:=anyError(V) then return pushSem(errorFound)
 104 put(P, ["]"])
 105 pushSem(&null)
 106 return
 107 end
 108
 109 procedure DOT()
 110 V:=popSem(2)
 111 if errorFound:=anyError(V) then return pushSem(errorFound)
 112 put(P, ["value"])
 113 pushSem(&null)
 114 return
 115 end
 116
 117 procedure LOGVALTRUE()
 118 V:=popSem(1)
 119 if errorFound:=anyError(V) then return pushSem(errorFound)
 120 pushSem(True)

The EULER Translator

Copyright © 1996. Thomas W. Christopher 53

 121 return
 122 end
 123
 124 procedure LOGVALFALSE()
 125 V:=popSem(1)
 126 if errorFound:=anyError(V) then return pushSem(errorFound)
 127 pushSem(False)
 128 return
 129 end
 130
 131 procedure REFERENCE()
 132 V:=popSem(2)
 133 if errorFound:=anyError(V) then return pushSem(errorFound)
 134 pushSem(&null)
 135 return
 136 end
 137
 138 procedure LISTHD2()
 139 V:=popSem(3)
 140 if errorFound:=anyError(V) then return pushSem(errorFound)
 141 pushSem(V[1]+1)
 142 return
 143 end
 144
 145 procedure LISTHD1()
 146 V:=popSem(1)
 147 if errorFound:=anyError(V) then return pushSem(errorFound)
 148 pushSem(0)
 149 return
 150 end
 151
 152 procedure LISTN2()
 153 V:=popSem(3)
 154 if errorFound:=anyError(V) then return pushSem(errorFound)
 155 put(P, [")",V[1]+1])
 156 pushSem(&null)
 157 return
 158 end
 159
 160 procedure LISTN1()
 161 V:=popSem(2)
 162 if errorFound:=anyError(V) then return pushSem(errorFound)
 163 put(P, [")",V[1]])
 164 pushSem(&null)
 165 return
 166 end
 167
 168 procedure PROCFORDECL()
 169 V:=popSem(3)
 170 if errorFound:=anyError(V) then return pushSem(errorFound)
 171 pushSem(V[1])
 172 return
 173 end
 174
 175 procedure PROCHD()
 176 V:=popSem(1)
 177 if errorFound:=anyError(V) then return pushSem(errorFound)
 178 bn +:= 1; on := 0
 179 put(P, ["proc",&null])

EULER

54 Copyright © 1996. Thomas W. Christopher

 180 pushSem(*P)
 181 n +:= 1
 182 N[n] := ["",m]
 183 m := n
 184 return
 185 end
 186
 187 procedure PROCDEF()
 188 V:=popSem(3)
 189 if errorFound:=anyError(V) then return pushSem(errorFound)
 190 put(P, ["endproc"])
 191 P[V[1]][2] := *P+1
 192 bn -:= 1
 193 n := m-1
 194 m := N[m][2]
 195 pushSem(&null)
 196 return
 197 end
 198
 199 procedure VALUE()
 200 V:=popSem(1)
 201 if errorFound:=anyError(V) then return pushSem(errorFound)
 202 put(P, ["value"])
 203 pushSem(&null)
 204 return
 205 end
 206
 207 procedure CALL()
 208 V:=popSem(2)
 209 if errorFound:=anyError(V) then return pushSem(errorFound)
 210 put(P, ["call"])
 211 pushSem(&null)
 212 return
 213 end
 214
 215 procedure LOADLOGVAL()
 216 V:=popSem(1)
 217 if errorFound:=anyError(V) then return pushSem(errorFound)
 218 put(P, ["logval",V[1]])
 219 pushSem(&null)
 220 return
 221 end
 222
 223 procedure LOADNUM()
 224 V:=popSem(1)
 225 if errorFound:=anyError(V) then return pushSem(errorFound)
 226 put(P, ["number",numeric(V[1].body)])
 227 pushSem(&null)
 228 return
 229 end
 230
 231 procedure LOADSYMB()
 232 V:=popSem(1)
 233 if errorFound:=anyError(V) then return pushSem(errorFound)
 234 put(P, ["symbol",V[1].body])
 235 pushSem(&null)
 236 return
 237 end
 238

The EULER Translator

Copyright © 1996. Thomas W. Christopher 55

 239 procedure LOADUNDEF()
 240 put(P, ["undef"])
 241 return
 242 end
 243
 244 procedure PARENS()
 245 V:=popSem(3)
 246 if errorFound:=anyError(V) then return pushSem(errorFound)
 247 pushSem(&null)
 248 return
 249 end
 250
 251 procedure INPUT()
 252 put(P, ["in"])
 253 return
 254 end
 255
 256 procedure UOP()
 257 V:=popSem(2)
 258 if errorFound:=anyError(V) then return pushSem(errorFound)
 259 put(P, [V[1].body])
 260 pushSem(&null)
 261 return
 262 end
 263
 264 procedure BOP()
 265 V:=popSem(3)
 266 if errorFound:=anyError(V) then return pushSem(errorFound)
 267 put(P, [V[2].body])
 268 pushSem(&null)
 269 return
 270 end
 271
 272 procedure UPLUS()
 273 V:=popSem(2)
 274 if errorFound:=anyError(V) then return pushSem(errorFound)
 275 pushSem(&null)
 276 return
 277 end
 278
 279 procedure NEG()
 280 V:=popSem(2)
 281 if errorFound:=anyError(V) then return pushSem(errorFound)
 282 put(P, ["neg"])
 283 pushSem(&null)
 284 return
 285 end
 286
 287 procedure CONJHD()
 288 V:=popSem(2)
 289 if errorFound:=anyError(V) then return pushSem(errorFound)
 290 put(P, ["and",&null])
 291 pushSem(*P)
 292 return
 293 end
 294
 295 procedure CONJ()
 296 V:=popSem(2)
 297 if errorFound:=anyError(V) then return pushSem(errorFound)

EULER

56 Copyright © 1996. Thomas W. Christopher

 298 P[V[1]][2] := *P+1
 299 pushSem(&null)
 300 return
 301 end
 302
 303 procedure DISJHD()
 304 V:=popSem(2)
 305 if errorFound:=anyError(V) then return pushSem(errorFound)
 306 put(P, ["or",&null])
 307 pushSem(*P)
 308 return
 309 end
 310
 311 procedure DISJ()
 312 V:=popSem(2)
 313 if errorFound:=anyError(V) then return pushSem(errorFound)
 314 P[V[1]][2] := *P+1
 315 pushSem(&null)
 316 return
 317 end
 318
 319 procedure TRUEPT()
 320 V:=popSem(2)
 321 if errorFound:=anyError(V) then return pushSem(errorFound)
 322 put(P, ["else",&null])
 323 pushSem(*P)
 324 return
 325 end
 326
 327 procedure IFCLSE()
 328 V:=popSem(3)
 329 if errorFound:=anyError(V) then return pushSem(errorFound)
 330 put(P, ["then",&null])
 331 pushSem(*P)
 332 return
 333 end
 334
 335 procedure IFEXPR()
 336 V:=popSem(3)
 337 if errorFound:=anyError(V) then return pushSem(errorFound)
 338 P[V[1]][2] := V[2]+1
 339 P[V[2]][2] := *P+1
 340 pushSem(&null)
 341 return
 342 end
 343
 344 procedure LABSTMT()
 345 V:=popSem(2)
 346 if errorFound:=anyError(V) then return pushSem(errorFound)
 347 pushSem(&null)
 348 return
 349 end
 350
 351 procedure LABDEF()
 352 local t,s
 353 V:=popSem(2)
 354 if errorFound:=anyError(V) then return pushSem(errorFound)
 355 t:=n
 356 repeat {# write(N[t][1]," : ",V[1].body)

The EULER Translator

Copyright © 1996. Thomas W. Christopher 57

 357 if t<=m then
 358 return pushCTError("undeclared label "||V[1].body)
 359 if N[t][1]===V[1].body then break
 360 t -:= 1
 361 }
 362 if N[t][4]~===&null then
 363 return pushCTError("redefinition of label "||V[1].body)
 364 s := N[t][3]
 365 N[t][3] := *P+1
 366 while s ~=== &null do {
 367 t := P[s][2]
 368 P[s][2] := *P+1
 369 s := t
 370 }
 371 pushSem(&null)
 372 return
 373 end
 374
 375 procedure BEGIN()
 376 V:=popSem(1)
 377 if errorFound:=anyError(V) then return pushSem(errorFound)
 378 bn +:= 1
 379 on := 0
 380 put(P, ["begin"])
 381 n +:= 1
 382 N[n] := ["",m]
 383 m := n
 384 pushSem(&null)
 385 return
 386 end
 387
 388 procedure BLKHD()
 389 V:=popSem(3)
 390 if errorFound:=anyError(V) then return pushSem(errorFound)
 391 pushSem(&null)
 392 return
 393 end
 394
 395 procedure BLKBODY()
 396 V:=popSem(3)
 397 if errorFound:=anyError(V) then return pushSem(errorFound)
 398 put(P, [";"])
 399 pushSem(&null)
 400 return
 401 end
 402
 403 procedure BLK()
 404 V:=popSem(3)
 405 if errorFound:=anyError(V) then return pushSem(errorFound)
 406 put(P, ["end"])
 407 n := m-1
 408 m := N[m][2]
 409 bn := bn-1
 410 pushSem(&null)
 411 return
 412 end

EULER

58 Copyright © 1996. Thomas W. Christopher

Chapter 5 Exercises

5.1 Change the exponentiation operator

Change EULER’s exponentiation operator from "**" to "^".

5.2 New unary operators

Implement two new unary operators for EULER:

• explode s, where s is a symbol, will yield a list of single character symbols which
are the characters in symbol s.

• implode L, where L is a list of symbols, will yield a symbol which is the concate-
nation of the symbols in list L.

For example,

 explode "frog"

 yields ("f","r","o","g")

 implode ("to","a","d")

 yields "toad"

 implode explode "frog"

 yields "frog"

 explode implode ("to","a","d")

 yields ("t","o","a","d")

Note that the syntax allows several explodes and implodes to be used together
and to operate on any primary.

Hint on implementation: You will need to change the scanner, the syntax (and
regenerate the parser), the interpreter, and maybe the semantics routines. In
short, you must make coordinated changes throughout the EULER compiler.

5.3 Change the symbol table

 Change the symbol table in the EULER compiler to use a stack of Icon tables.

Exercises

Copyright © 1996. Thomas W. Christopher 59

5.4 Use relative block numbers

Observe that the EULER implementation keeps around block numbers when
they are not needed. The first field of an activation record contains the block
number, which indicates the depth of nesting of the block. When the @ instruc-
tion searches for a variable or formal parameter, it compares the block number
of the activation record it is looking at with the block number desired (see pro-
cedure reference, lines 8-17 in the interpreter). Block number j is always nested
within block j-1. When the @ instruction is generated, the compiler knows the
number of the block the instruction is in and the number of the block the vari-
able is in, and hence how many levels back on the static chain procedure refer-
ence will travel before finding the variable.

Given this insight, make the following changes:

5.5 Peephole optimization

Peephole optimization is an improvement of generated code that replaces short
sequences of instructions with shorter sequences. Perform at least the two fol-
lowing peephole optimizations:

See if there are some other instruction sequences you can recognize and opti-
mize.

@ on,levels Change the reference instruction to indicate the
number of levels back along the static chain the
variable or formal parameter is located.

label pa,levels Make the same change to the label instruction.

replace with explanation

@ on,levels
value

loadvalue on,levels loadvalue is a new instruction
that performs the combined opera-
tions of the two instructions it re-
places. Most machines have both
load and load-address instructions.

label pa,levels
value

label pa,levels The value instruction leaves a
ProgRef value on the stack unmod-
ified.

EULER

60 Copyright © 1996. Thomas W. Christopher

5.6 Jump optimization

Jump optimization attempts to optimize collections of jump instructions. Since
the names of jump instructions in the EULER abstract machine are based on the
EULER constructions they are generated from, rather than on their behavior, it
would be confusing to try to discuss the optimizations using their own names.
We will describe some jump optimizations using the names given in the follow-
ing table:

Here are some examples of jump optimizations:

instruction EULER
name

mnemonic description

pajf dst then dst pop and jump
false

Pop the top value off the
stack. If the value popped was
false, jump to dst.

pajt dst ---- pop and jump
true

Pop the top value off the
stack. If the value popped was
true, jump to dst.

jfop dst and dst jump false or
pop

If the top value on the stack is
false, jump to dst; otherwise
pop it off the stack.

jtop dst or dst jump true or
pop

If the top value on the stack is
true, jump to dst; otherwise
pop it off the stack.

j dst else dst jump Unconditionally jump to dst.

original
instructions

replacement similarly for instructions

 pajf
L1
 ...
L1:
j L2

 pajf L2
 ...
L1: j L2

pajt L1,
jtop L1,

jfop L1, or
j L1

 jtop
L1
 ...
L1: jtop
L2

 jtop L2
 ...
L1: jtop L2

jfop/jfop

Exercises

Copyright © 1996. Thomas W. Christopher 61

Implement at least these jump optimizations.

5.7 Add a while-expression.

Add a while-expression and accompanying next- and break-expressions.

5.7.1 Syntax

expr → while expr do expr

expr → next

expr → break

5.7.2 Semantics

expr → while expr1 do expr2

As usual, the while-expression repeatedly evaluates expression expr2 as long as
expression expr1 evaluates to true. When expr1 evaluates to false, the while-ex-
presion terminates.

Since the while-expression is an expression, it must return a value. It returns a
value of false if it is exited normally (by expr1 evaluating to false) and the value
true if it is exited via a break-expression.

expr → next

The next-expression will restart the while-expression from the beginning. The
next-expression can be evaluated in either expr1 or expr2.

expr → break

The break-expression will make the enclosing while expression terminate and
yield the value true. The break-expression can be evaluated in either expr1 or
expr2.

 jtop
L1
 ...
L1: jfop
L2

 pajt L1+1
 ...
L1: jfop L2
L1+1:

jfop/jtop

original
instructions

replacement similarly for instructions

EULER

62 Copyright © 1996. Thomas W. Christopher

5.7.3 Hints on implementation

5.7.3.1 Suggested translation:

The only new instruction is popto which removes all of the stack back to that
activation record along the static chain which has block number bn. The and
instruction is a conditional jump and the else instruction is an unconditional
jump.

5.7.3.2 Suggested compiler data structures:

Keep a stack with one element for every enclosing while-expression. Each ele-
ment of the stack contains three things:

1 The block number of the block created by the while-expression. This is
the bn used in the popto instructions.

2 The address (position in P) of the Lnext label for the while-expression.

3 A linked list of and and else instructions jumping to the Lbreak label.
These will be filled in at the end of the loop, when the position of the
Lbreak label is known.

source translation

while e1 do
e2

 begin
Lnext:
 <e1>
 and Lbreak
 <e2>
 ;
 else Lnext
Lbreak:
 end

next popto bn
 else Lnext

break popto bn
 logval true
 else Lbreak

