
Security Weaknesses of Copilot Generated Code in GitHub
Yujia Fu

School of Computer Science
Wuhan University
Wuhan, China

yujia_fu@whu.edu.cn

Peng Liang
School of Computer Science

Wuhan University
Wuhan, China

liangp@whu.edu.cn

Amjed Tahir
School of Mathematical and
Computational Sciences

Massey University
Palmerston North, New Zealand

a.tahir@massey.ac.nz

Zengyang Li
School of Computer Science

Central China Normal University
Wuhan, China

zengyangli@ccnu.edu.cn

Mojtaba Shahin
School of Computing Technologies

RMIT University
Melbourne, Australia

mojtaba.shahin@rmit.edu.au

Jiaxin Yu
School of Computer Science

Wuhan University
Wuhan, China

jiaxinyu@whu.edu.cn

ABSTRACT
Modern code generation tools use AI models, particularly Large
Language Models (LLMs), to generate functional and complete
code. While such tools are becoming popular and widely available
for developers, using these tools is often accompanied by security
challenges, leading to insecure code merging into the code base.
Therefore, it is important to assess the quality of the generated
code, especially in terms of its security. Researchers have recently
explored various aspects of code generation tools, including se-
curity. However, many open questions about the security of the
generated code require further investigation, especially the security
issues of automatically generated code in the wild. To this end, we
conducted an empirical study by analyzing the security weaknesses
in code snippets generated by GitHub Copilot that are found as
part of publicly available projects hosted on GitHub. The goal is to
investigate the types of security issues and their scale in real-world
scenarios (rather than crafted scenarios). To this end, we identi-
fied 435 code snippets generated by GitHub Copilot from publicly
available projects. We then conducted extensive security analysis
to identify Common Weakness Enumeration (CWE) instances in
these code snippets. The results show that (1) 35.8% of Copilot gen-
erated code snippets contain CWEs, and those issues are spread
across multiple languages, (2) the security weaknesses are diverse
and related to 42 different CWEs, in which CWE-78: OS Command
Injection, CWE-330: Use of Insufficiently Random Values, and CWE-
703: Improper Check or Handling of Exceptional Conditions occurred
the most frequently, and (3) among the 42 CWEs identified, 11 of
those belong to the currently recognized 2022 CWE Top-25. Our
findings confirm that developers should be careful when adding
code generated by Copilot (and similar AI code generation tools)
and should also run appropriate security checks as they accept the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

suggested code. It also shows that practitioners should cultivate
corresponding security awareness and skills.

CCS CONCEPTS
• Software and its engineering→ Software development tech-
niques; • Security and privacy → Software security engineer-
ing.

KEYWORDS
Code Generation, Security Weaknesses, CWEs, GitHub Copilot
ACM Reference Format:
Yujia Fu, Peng Liang, Amjed Tahir, Zengyang Li, Mojtaba Shahin, and Jiaxin
Yu. 2023. Security Weaknesses of Copilot Generated Code in GitHub. In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Code generation tools aim to automatically generate functional
code based on prompts, which can include text descriptions (com-
ments), code (such as function signatures, expressions, variable
names, etc.), or a combination of text and code [34]. After writing
an initial code or comment, developers can rely on code genera-
tion tools to complete the remaining code. This approach can save
development time and accelerate the software development pro-
cess. Automated code generation tools have always been an active
research discussion topic [22, 36]. Some of the earliest work can
be traced back to the 1960s when Waldinger and Lee proposed a
program synthesizer called PROW, which automatically generated
LISP programs based on specifications provided by users in the
form of predicate calculus [46]. As computer languages continued
to evolve, more and more programming languages began to support
meta-programming, making automated code generation technology
more efficient and flexible. In recent years, the rapid development
of artificial intelligence technologies, particularly in the form of
machine learning and deep learning models, has accelerated the
development of code generation technologies.

Recent advancements in code generation came with the emer-
gence of Large Language Models (LLMs). LLMs are deep learning
models trained on a large code/text corpus with powerful language
understanding capabilities that can be used for tasks such as natural

ar
X

iv
:2

31
0.

02
05

9v
1

 [
cs

.S
E

]
 3

 O
ct

 2
02

3

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Y. Fu et al.

language generation, text classification, and question-answering
systems [5]. Compared to previous deep learningmethods, the latest
developments in LLMs, such as Generative Pre-trained Transformer
(GPT) models, have opened up new opportunities to address the
limitations of existing automated code generation technology [24].
Currently, code generation tools based on LLMs have also been
widely applied, such as Codex by OpenAI [26], AlphaCode by Deep-
Mind [21], and CodeWhisperer by Amazon [3].

These models are trained on billions of public open-source lines
of code, which includes public codewith unsafe coding patterns [15].
Therefore, code generation tools based on such models can pose
security risks, and the code they generate may also have secu-
rity weaknesses. For example, GitHub Copilot may produce some
insecure code, as its underlying model Codex is pre-trained on
untrusted data from GitHub [4], which is known to contain buggy
programs [31]. In addition, the code with vulnerabilities generated
by these code generation tools may continue to be used to train the
model, thus further generating code with vulnerabilities, leading to
a vicious cycle. Previous research has studied code generation tools,
with more focus on the correctness of the results [6, 20, 30, 47], and
relatively less attention has been paid to security aspects [28, 29, 35].
To the best of our knowledge, potential security weaknesses in
practical scenarios have not been fully considered and addressed in
previous work, and GitHub Copilot clarifies that “the users of Copilot
are responsible for ensuring the security and quality of their code [11]”.
GitHub also provides tools such as CodeQL to help developers scan
the security issues in their code.

To this end, we conducted an empirical study on the security
weaknesses of generated code by GitHub Copilot, which is available
on GitHub. We chose Copilot as our research subject because it is a
commercial instance of AI-assisted programming and has gained
much attention and popularity among developers since its launch
in 2021. The security weaknesses of code generated by Copilot
have also gained attention in the research and practice community.
Furthermore, thousands of developers in the GitHub community
have shared their experiences of using Copilot in real-world sys-
tems [6]. We collected code generated by Copilot that has been
used in projects on GitHub and analyzed the security of the gener-
ated code through the lens of a real-world production environment.
Then, we used static analysis tools to perform security analysis on
the collected code snippets and classified the security weaknesses
in the code snippets using the Common Weakness Enumeration
(CWE).

Our findings show that: (1) 35.8% of Copilot generated code
snippets have security weaknesses, and security weaknesses arise
regardless of the programming language used; (2) the security weak-
nesses are diverse and related to 42 different CWEs, in whichCWE-
78: OS Command Injection, CWE-330: Use of Insufficiently Random
Values and CWE-703: Improper Check or Handling of Exceptional
Conditions are the most frequently occurred; and (3) among the 42
CWEs identified, 11 CWEs belong to the currently recognized 2022
CWE Top-25.

The contributions of this work: (1) We curated a dataset of
code snippets generated by Copilot that has been used in projects
on GitHub (a curated data [10] is made available online for future
research in this area.) and conducted security checks on them,which
can to some extent reflect the frequency of security weaknesses

encountered by developers when using Copilot to generate code
in actual coding; (2) We extensively checked all possible CWEs in
the code snippets and analyzed them. This can help developers
understand the common CWEs caused by using Copilot to generate
code in actual coding and how to accept the code suggestions
provided by Copilot safely.

The rest of this paper is structured as follows: Section 2 presents
the related work. Section 3 presents the research questions and the
research design of this study. Section 4 presents our study results,
which are further discussed in Section 5. The potential threats to
validity are clarified in Section 6. Section 7 concludes this work
with future work directions.

2 RELATEDWORK
2.1 AI-assisted Code Generation Tools
With the rise of code generation tools integrated with IDEs, many
studies have evaluated these code generation systems based on
transformer models to better understand their effectiveness in real-
world scenarios. Previous research mainly focused on whether the
code generated by these tools can meet users’ functional require-
ments. Yetistiren et al. [49] evaluated the effectiveness, correctness,
and efficiency of the code generated by GitHub Copilot, and the re-
sults showed that GitHub Copilot could generate valid code with a
success rate of 91.5%, making it a promising tool. Sobania et al. [37]
evaluated the correctness of the code generated by GitHub Copilot
and compared the tool with an automatic program generator with a
Genetic Programming (GP) architecture. They concluded there was
no significant difference between the two methods on benchmark
problems. Nguyen and Nadi [25] conducted an empirical study us-
ing 33 LeetCode problems and created queries for Copilot in four
different programming languages. They evaluated the correctness
and comprehensibility of the code suggested by Copilot by running
tests provided by LeetCode. They found that Copilot’s suggestions
have lower complexity. Burak et al. [48] evaluated the code qual-
ity of AI-assisted code generation tools (GitHub Copilot, Amazon
CodeWhisperer, and ChatGPT). They compared the improvements
between the latest and older versions of Copilot and CodeWhisperer
and found that the quality of generated code had improved.

In recent years, researchers have also started to focus on the
experience of developers when using AI-assisted code generation
tools and how the tools can improve productivity by observing
their behavior. Vaithilingam et al. [45] studied how programmers
use and perceive Copilot, and they found that while Copilot may
not necessarily improve task completion time or success rate, it
often provides a useful starting point. They also noted that partici-
pants faced difficulties in understanding, editing, and debugging
the code snippets generated by Copilot. Barke et al. [2] presented
the first theoretical analysis of how programmers interact with
Copilot based on the observations of 20 participants. Sila et al. [20]
conducted an empirical study on AlphaCode, identifying similari-
ties and performance differences between code generated by code
generation tools and code written by human developers. They ar-
gued that software developers should check the generated code
for potentially problematic code that could introduce performance
weaknesses.

Security Weaknesses of Copilot Generated Code in GitHub Conference’17, July 2017, Washington, DC, USA

These works above conducted relatively extensive evaluations
of code generation tools in terms of correctness, effectiveness, and
robustness. However, there is still room for improvement regarding
its security, as detailed in the following section.

2.2 Security of Code Generation Techniques and
LLMs

Code security is an issue that cannot be ignored in the software
development process. Recent work has primarily focused on evalu-
ating the security of the code generation tools and the security of
the LLMs that these tools are based on.

Pearce et al. [28] first evaluated the security of GitHub Copilot
in generating programs by identifying known weaknesses in the
suggested code. The authors prompted Copilot to generate code
for 89 cybersecurity scenarios and evaluated the weaknesses in
the generated code. They found that 40% of the suggestions in the
relevant context contained security-related bugs (i.e., CWE classifi-
cation from MITRE [40]). Siddiq et al. [35] conducted a large-scale
empirical study on code smells in the training set of a transformer-
based Python code generation model and investigated the impact of
these harmful patterns on the generated code. They observed that
Copilot introduces 18 code smells, including non-standard coding
patterns and two security smells (i.e., code patterns that often lead
to security defects). Khoury et al. [19] studied the security of the
source code generated by the ChatGPT chatbot based on LLMs, and
they found that ChatGPT was aware of potential weaknesses but
still frequently generated some non-robust code.

Several researchers also compared the situation where code gen-
eration tools produce insecure code with that of human developers.
Sandoval et al. [33] conducted a security-driven user study, and
their results showed that the rate at which AI-assisted user pro-
gramming produced critical security errors was no more than 10%
of the control group, indicating that the use of LLMs does not intro-
duce new security risks. Asare et al. [1] conducted a comparative
empirical analysis of these tools and language models from a se-
curity perspective and investigated whether Copilot is as bad as
humans in generating insecure code. They found that while Copilot
performs differently across vulnerability types, it is not as bad as
human developers when it comes to introducing vulnerabilities in
code. In addition, researchers have also constructed datasets to test
the security of these tools. Tony et al. [44] proposed LLMSecEval, a
dataset containing 150 natural language prompts that can be used
to evaluate the security performance of LLMs. Siddiq et al. [36]
provided a dataset, SecurityEval, for testing whether a code gener-
ation model has weaknesses. The dataset contains 130 Python code
samples.

Unlike the works above, we studied the security weaknesses
exhibited by code generation tools in a real-world production en-
vironment (i.e., GitHub). We collected code snippets from GitHub
generated by developers using Copilot in daily production as a
source of research data, whereas in the Pearce et al. [28] study,
the research data came from code generated by the authors using
Copilot based on the natural language prompts related to high-
risk network security weaknesses. In addition to this, Pearce et al.
configured CodeQL only to examine CWEs targeted by security
weaknesses associated with the prompted scenarios. In contrast, we

used various static analysis tools to examine all types of CWEs and
analyze them extensively. Our research results may help developers
understand what common CWEs are prone to result from using
Copilot to generate code in real coding.

2.3 Security Static Analysis
Vulnerabilities detection is critical to improve software security and
ensure quality [16]. There are two used methods for vulnerability
detection in source code: via static and dynamic code analysis.
Dynamic analysis techniques are more sound and precise but lack
coverage [9]. On the other hand, static analysis is less precise but
offers greater coverage and allows to analyze programs without
the need to execute them [39]. Static analysis has been widely used
to find security issues in code, given it is cheaper to run and can
conduct whole program analyses without the need to execute the
program [7]. OWASP [27] provides a list of commonly used static
analysis tools. This includes tools like CodeQL: a general-purpose
automatic scanning tool, FindBugs: a tool for Java programs, ESLint:
a tool for JavaScript programs, Bandit: a tool for Python programs,
and GoSec: a tool for Go programs. Such tools have been widely
used in previous security analysis research [28, 35, 43].

Kaur et al. [18] compared static analysis tools for vulnerability
detection in scanning C/C++ and Java source code. Tomasdottir et
al. [43] conducted an empirical study on ESLint, the most commonly
used JavaScript static analysis tool among developers. Pearce et
al. [28] used CodeQL for security weakness scanning of generated
Python and C++ code. Siddiq et al. [36] used Bandit to check Python
code generated using a test dataset.

These static analysis tools support different analysis algorithms
and techniques. By using multiple tools for analysis, potential weak-
nesses in the code can be discovered from different perspectives
and levels, avoiding omissions and improving the accuracy of the
analysis. Our study first used CodeQL to scan the collected code
snippets. CodeQL is an open-source tool that supports multiple lan-
guages, including Java, JavaScript, C++, C#, and Python. It can find
weaknesses in a codebase based on a set of knownweaknesses/rules.
In addition, to obtain more comprehensive scan results, we supple-
mented the scan of code in different languages with static analysis
tools (i.e., Cppcheck and Bandi) tailored to specific languages.

3 RESEARCH DESIGN
In this section, we describe our research design in detail. In Sec-
tion 3.1, we first define our Research Questions (RQs), followed by
the process of collecting and filtering the code snippets generated
by Copilot in Section 3.2. We then explain the security analysis
performed on the identified snippets and the process of filtering
the raw results generated by static analysis tools in Section 3.3.

3.1 Research Goal and Questions
This empirical study aims to understand the potential security weak-
nesses in Copilot generated code. We first collected code snippets
generated by Copilot from GitHub projects as the data source for
our research. It should be noted that it is not possible to access
all the code generated by Copilot in GitHub projects, as there is
no direct way to identify if part of a file was generated by Copilot
(i.e., source files do not contain any signatures to indicate if Copilot

Conference’17, July 2017, Washington, DC, USA Y. Fu et al.

generates the code). However, we can identify many code snippets
by searching through the repository description and the comments
provided in the code (details provided in Section 3.2.2). We then
analyzed the identified snippets for security weaknesses. We aim
to help developers and researchers understand common security
weaknesses when using Copilot without focusing on whether the
code generation aspects are used correctly.

We conducted this empirical study following the guidelines pro-
posed in [8]. The RQs, their rationale, and the research process of
this study (see Fig. 1) are detailed in the subsections below.

RQ1. How secure is the code generated by Copilot in
GitHub Projects?

Rationale: Copilot may produce code suggestions that develop-
ers accept but these suggestions may include security weaknesses
that could potentially make the program vulnerable. The answer
to RQ1 helps to understand the frequency of security weaknesses
developers encounter when using Copilot in production.

RQ2. What security weaknesses are present in the code
snippets generated by Copilot?

Rationale: Copilot generated code may contain security weak-
nesses [28], and developers should conduct a rigorous security
review before accepting the code generated by Copilot. As clarified
in the documentation of GitHub Copilot “the users of Copilot are
responsible for ensuring the security and quality of their code [11]”.
The answer to RQ2 can help developers better understand possi-
ble security weaknesses in the code generated by Copilot, thereby
enabling them to prevent and fix these weaknesses more effectively.

RQ3. Howmany security weaknesses belong to theMITRE
CWE Top-25?

Rationale: The MITRE list contains the top 25 most dangerous
security weaknesses. The answer to RQ3 can help developers un-
derstand whether the code generated by Copilot contains widely
recognized types of security weaknesses and Copilot’s ability to
handle these recent and common weaknesses.

3.2 Data Collection and Filtering
We chose GitHub as the primary data source for answering our
RQs. GitHub is widely used by developers. As the world’s largest
code hosting platform, GitHub contains millions of public code
repositories and offers access to a large number of code resources,
allowing us to cover multiple programming languages and project
types in our study. We used code snippets generated by Copilot
on GitHub as our research object to analyze the relevant security
weaknesses of Copilot. Our scripts and dataset are provided online
in our replication package [10].

3.2.1 Code Snippets Collection. Step 1. To collect code snippets
generated by Copilot, we first conducted a pilot search to formulate
our search keywords. First, we used “GitHub Copilot” and “Copilot”
as our search keywords. As expected, we found that the term “Copi-
lot” not only refers to the code generation tool launched by GitHub
but also to tools in the aviation or telemetry fields. Therefore, using
the keyword “Copilot” solely may return irrelevant content that
may not be related to the use of the tool. On the other hand, using
“GitHub Copilot” as a search keyword can exclude content unrelated
to the code generation tool Copilot and narrow the search scope,
which is what we have used to locate the code snippets.

However, even with this basic search keyword, we still need to
carefully filter the search results to ensure they are truly related
to GitHub Copilot. Although using “GitHub Copilot” as a search
keyword increases the relevance of the results to Copilot, these
results are not necessarily the code snippets generated by Copilot.
It should be noted that many code snippets containing the “GitHub
Copilot” keyword in the search results display GitHub Copilot as
text. Developers may use them to describe their experience using
Copilot to generate code or showcase information related to Copilot.
These code snippets are not what we need because they do not
directly relate to the code generated by Copilot. Our target is code
generated by Copilot, not code snippets containing the keyword
“Copilot”.

Our observations from the pilot search showed that using key-
words such as “by GitHub Copilot”, “use GitHub Copilot”, and “with
GitHub Copilot” can improve the accuracy of the search results.
These keywords enable us to focus more on the code generated
using Copilot rather than code snippets that contain other con-
tent related to Copilot. In addition, since our goal is to use auto-
mated analysis tools to perform security scans on the collected
code snippets, we further limited the types of code snippets dur-
ing the search to Python, JavaScript, Java, C++, C#, and Go. These
are the mainstream languages supported by Copilot, and also the
languages supported by CodeQL. We collected the Code parts from
these search results. Considering that some projects declare using
GitHub Copilot generated code in their README files or project
description provided in GitHub, we decided to retain the results
from the Repository label in the search results. Fig. 2 shows an
example of our search process.

Table 1 reports the search terms we used and the number of
search results obtained from GitHub. In this step, we collected a
total of 8,004 results, of which 7,749 were from the Code label, and
255 were from the Repository label. The same search result may
contain multiple keywords, meaning there are duplicate projects in
the collected data. After removing duplicate projects, we obtained
a total of 4249 search results, of which 4081 were from the Code
label, and 168 were from the Repository label. Table 2 shows the
number of different language types of search results we obtained
from the Code label.

Table 1: Search results based on different terms used

Search Term # Code # Repositories

1 “By GitHub Copilot” 2549 54
2 “Use GitHub Copilot” 1822 77
3 “With GitHub Copilot” 3378 127
Total 7749 255

3.2.2 Filtering Code Snippets. Step 2. After obtaining the results
from the keyword searches, we further filtered them by not only
considering the accuracy of the keywords but also investigating
the project’s documentation, code comments, and other metadata
in the search results to determine whether they were generated
by GitHub Copilot. Additionally, since we wanted to obtain code
snippets used in real-world projects, we excluded search results
used to solve simple algorithmic problems on platforms, such as

Security Weaknesses of Copilot Generated Code in GitHub Conference’17, July 2017, Washington, DC, USA

Filter Code Snippets
2

Pre-process Data
3

Analyze the filtered
Scan Results

6
Identify Search Terms

1 5
Scan Code Snippets
4

GitHub Static
Analysis Tool

Security Issues
& CWE Top-25

Filter Scan Results
5

Figure 1: Overview of the research process

Figure 2: Example of the search process

Table 2: Search Results from GitHub

Language # Code results

L1 Python 784
L2 JavaScript 863
L3 Java 641
L4 C++ 437
L5 C# 386
L6 Go 970
Total 4081

LeetCode, which generally involve simple code andmay not involve
security weaknesses.

We begin by explaining the terminology used in data filtering:
the search results under the Repository label are the projects that
contain code files, and the search results under the Code label are
individual code files. Those code files contain Copilot generated
code snippets. In filtering the projects, we followed three rules: (1)
for search results under the Repository label, we identified projects
that are fully generated by Copilot, as declared in the projects
description or the associated README file(s). We retained code
files for Python, JavaScript, Java, C++, C#, and Go, which are the
main languages supported by Copilot. (2) For search results under
the Code label, we retained code files with comments showing the

code generated by Copilot. (3) As we mentioned above, we then
excluded code files used to solve simple algorithm problems. We
provide examples for the three rules in Figs. 3, 4 and 5. As shown in
the example in Fig. 3 for the Repository label, we kept all the Python
files. In the next example in Fig. 4, we kept the entire file where
the Copilot generated code snippet was located. In Fig. 5, the code
snippet was removed as it was determined the code just solved a
simple algorithmic problem. Meanwhile, for the code files retained
under the Repository label, we consider the entire code file as code
generated by Copilot. In other words, we assume that all code in the
file is generated by Copilot because it was stated in the README
file that it was all generated by Copilot. For code files retained
under the Code label, we know that the files contain code snippets,
perhaps even just a few lines of code, generated by Copilot. Instead
of identifying the specific Copilot generated code in this step, we
combine the warning messages from the security scan and the code
comments in the file to determine whether Copilot generates the
code snippet with the security problem (this process is explained
further in Section 3.3.2).

After completing the pilot data labeling, the first author checked
the rest of the search results, and obtained a total of 465 code
snippets. After removing duplicate results, we finally obtained 435
different code snippets. Among them, 249 are from the Repository

Conference’17, July 2017, Washington, DC, USA Y. Fu et al.

label, and 186 are from the Code label. Table 3 shows the types and
numbers of code snippets obtained.

Table 3: Code snippets from GitHub

Language # Code Snippets: Repository # Code Snippets: Code Total

L1 Python 132 119 251
L2 JavaScript 51 28 79
L3 Java 25 18 43
L4 C++ 14 12 26
L6 Go 19 1 20
L5 C# 8 8 16
Total 249 186 435

3.3 Data Pre-processing and Analysis
3.3.1 Data Pre-process. Step 3. CodeQL is a scalable static security
analysis tool that is widely used in practice, and enables users to an-
alyze code and detect relevant weaknesses using predefined queries
and test suites and supports for multiple languages (including Java,
JavaScript, C++, C#, Go, and Python [12]). Before using CodeQL
to scan the identified code snippets for security weaknesses, we
needed to create a CodeQL database for the source code. For inter-
preted languages like Python and JavaScript, the source code can
be directly analyzed, while for compiled languages such as Java,
the source code will need to be compiled first and then imported
into the CodeQL database. Therefore, we first compiled the code
snippets of all compiled languages (i.e., C#, Java, C++, and Go). We
removed any code snippets that could not be compiled. For success-
fully compiled files, we generated the CodeQL database required
for queries. At the same time, for interpreted languages Python and
JavaScript files, we stored 20 files in each database to improve effi-
ciency, because if we generate a database for an exceptionally large
number of files, this would increase the database compilation and
scanning time, which is much longer than partitioning them into
small databases. In total, we obtained 80 code databases available
for CodeQL scanning. Table 4 shows the types and numbers of files
in each database.

Table 4: Databases for CodeQL scanning

Language # Databases: Repository # Databases: Code

L1 Python 7 6
L2 JavaScript 3 2
L3 Java 8 18
L4 C++ 5 12
L5 C# 3 7
L6 Go 13 1
Total 39 46

3.3.2 Data Analysis. Step 4.We used well-known automated static
analysis tools listed by OWASP [27] to scan the collected code snip-
pets. Since different static analysis tools may use different algo-
rithms and rules to detect security weaknesses, using multiple tools
can increase our chances of discovering security issues in the code.
To improve the coverage and accuracy of the results, we used two
static analysis tools for security checks on each code snippet (i.e.,
CodeQL plus a dedicated tool for the specific language).

We first used CodeQL to analyze the code in our dataset. The
default query suite for the standard CodeQL query package is
codeql-suites/<lang>-code-scanning.qls. There are several
useful query suites in the codeql-suite directory of each package. For
example, the codeql/cpp-queries package contains the following
query suites [13]:

• Cpp-code-scanning.qls, which is the standard code scan-
ning query for C++. It covers various features and syntax of
C++ and aims to discover some common weaknesses in the
code.

• Cpp-security-extended.qls, which includes some more
advanced queries than cpp-code-scanning.qls and can detect
more security weaknesses.

• Cpp-security-and-quality.qls, which combines queries
related to security and quality, covering various aspects of
C++ development from basic code structure and naming con-
ventions to advanced security and performance weaknesses.
It aims to help developers improve the security and quality
of their code.

In this study, we scanned code snippets using the
<language>-security-and-quality.qls test suite related
to security weaknesses. These test suites check for multiple
security properties and cover many CWEs. For example, the
python-security-and-quality.qls test suite for Python
provides 168 security checks, the JavaScript test suite provides 203
security checks, and the C++ test suite provides 163 security checks.
As the query reports only provide the name and description of
the security issues, we manually matched the results in the query
reports with the corresponding CWE IDs.

We then selected other popular static security analysis tools
for files in each program languages we analyzed. We used the
following popular security analysis tools: Bandit for Python, ESLint
for JavaScript, Cppcheck for C ++, Findbugs for Java, Roslyn for
C# and Gosec for Go. In cases where we could not directly obtain
the CWE ID related to the security issue from the scan results, we
manually mapped the security attributes to the corresponding CWE
for later analysis. We explain the specific correspondences in detail
in Section 4.2.

Step 5. We scanned code snippets from the Repository and Code
labels, and we filtered the scan results before analyzing them. We
first removed the scan results that were repeatedly prompted by
two of the tools, then removed the results that were unrelated to
the security issue, and finally confirmed that the Copilot generated
code indeed caused the results related to the security issue. As we
explained in Section 3.2.2, we considered the code snippet from the
Repository label to be the entire code file. Therefore, we kept the
entire scan results from the Repository label and counted all the
security issues they suggested. For the code snippet obtained from
the Code label, we started by scanning the code file. If the static
analysis tool found a security issue in the code, we located the code
snippet in the file according to the line number of the security issue
indicated by the scanning result. We determined whether it was
generated by Copilot based on the comments before and after the
code snippet. If Copilot indeed generated the code snippet with a
security issue, we kept the scan result for our subsequent statistics.
We further analyzed the filtered scan results in Step 6, detailed in

Security Weaknesses of Copilot Generated Code in GitHub Conference’17, July 2017, Washington, DC, USA

Figure 3: Example of rule 1: project is fully written by Copilot

Figure 4: Example of rule 2: files with comments showing the code generated by Copilot

Section 4 according to the specific RQs. We provide our full dataset
(including code snippets, full scan results, and filtered results) in
our replication package [10].

4 RESULTS
We present the results of three RQs formulated in Section 3.1 below.
For each RQ, we first explain how we analyzed the collected code
snippets to answer the RQ. We then provide a detailed presentation
of the final results for each RQ.

4.1 RQ1: How secure is the code generated by
Copilot?

Approach. To answer this RQ, we collected 435 code snippets
generated by Copilot fromGitHub projects. These snippets cover six
common programming languages. We used two static analysis tools
(CodeQL + another language-dedicated tool) to scan and analyze
the code snippets and then combine the results obtained from the
two tools. The aim is to achieve a better coverage of security issues.
Therefore, as long as one of the tools detected the presence of a
security issue, the code snippet was considered vulnerable.

In the analysis results obtained from the CodeQL tool, three
types of warnings were used to describe the detected weaknesses:

Conference’17, July 2017, Washington, DC, USA Y. Fu et al.

Figure 5: Example of rule 3: files used to solve simple algorithm problems

Recommendation, which provides suggestions for improving code
quality;Warning, which alerts to potential weaknesses that could
cause code to run abnormally or unsafely; and Error, which is the
highest level of warning and alert to inform that the error could
cause code to fail to compile or run incorrectly. Since our research
primarily focused on security weaknesses, we only counted code
snippets that had warnings and errors, and we ignored the other
code quality recommendations. For the scanning results from the
Code label, we also needed to identify whether the security issues
obtained from the scan were from Copilot generated code snippets
based on the comment that appears before the method. We provide
an example of the scan results filtration in Fig. 6. In Step 1, we first
went to the corresponding file to locate the specific code snippet
based on the start and end lines of the scan results that suggested
a security issue. In Step 2, we located the code at Line 103 and
found no comment indicating that Copilot generated it. In Step 3,
we also found that the code snippet generated by Copilot in the
file was located at Lines 226 to 239, and we then determined that
the code snippet generated by Copilot did not cause this security
issue and discarded this scan result from further analysis. Finally,
we aggregated the filtered results obtained using multiple analysis
tools to calculate the number of code snippets with security issues
detected.

Results. Table 5 shows the numbers of code snippets for dif-
ferent types and the numbers and percentages of code snippets
with security weaknesses. From the statistical results, we found
that out of the 435 code snippets generated by Copilot, 35.8% of
them have security weaknesses, regardless of the programming
language. There is a higher proportion of security weaknesses in
Python and JavaScript code, which are the most popular Copilot
languages developers use [38]. Out of the 251 Python code snippets,
39.4% have security weaknesses. Among the 79 JavaScript code
snippets we collected, 27.8% have security weaknesses. Among
all programming languages, C++ code snippets have the highest
proportion of security weaknesses, reaching 46.1%. Go also has
a relatively high proportion of security weaknesses, at 45.0%. In
comparison, the proportion of files with security issues is lower for
C# and Java code, at 25% and 23.2%, respectively.

Table 5: The number and percentage of code snippets with
security weaknesses generated by Copilot

Language # Snippets # Snippets containing
security weaknesses %

Python 251 99 39.4%
JavaScript 79 22 27.8%
Java 43 10 23.2%
C++ 26 12 46.1%
Go 20 9 45.0%
C# 16 4 25%

Total 435 156 35.8%

4.2 RQ2: What security weaknesses are present
in the code snippets generated by Copilot?

Approach. To answer RQ2, we processed the results of the scans
conducted for RQ1, eliminating duplicate security issues detected at
the same code snippet location. In total, we identified 600 security
weaknesses across 435 code snippets. Table 6 shows the number of
security weaknesses found in code files of different programming
languages.

Table 6: The number of security weaknesses in code
snippets generated by Copilot

Language # Snippets containing
security weaknesses

Total security
weaknesses

Python 99 352
JavaScript 22 93
Java 10 56
C++ 12 70
Go 9 18
C# 4 11
Total 156 600

For each code snippet, we used CWEs to classify the security
issues identified by the static analysis. Each CWE has a unique ID
and a set of related descriptions, including its potential impact and
how to detect and fix the CWE [40]. Some static analysis tools we
used, such as Bandit and Gosec, provide a CWE ID corresponding
to the detected security issues in their scan results. For other scan

Security Weaknesses of Copilot Generated Code in GitHub Conference’17, July 2017, Washington, DC, USA

Figure 6: Example of filtering scan results from the Code label that are generated by Copilot

tools that do not directly give a CWE ID, such as Codeql, ESLint,
and FindBugs, we manually associated the provided security issue
informationwith a CWE ID, which is detailed below. The QL queries
used in CodeQL often point to a specific CWE, and the scanning
process typically displays the CWE-ID associated with the QL query.
Although only the name of the QL query is shown in the scan results,
we can manually correlate the name field with the CWE ID. For
example, the result shows “Hard-coded credential in API call”, and
we know that Hardcodedcredential.ql query belongs to CWE-
798, this security issue can be mapped to the same CWE (798). In
addition, while FindBugs and ESLint also identify security issues,
their scan results only provide descriptions of the security issues.
We manually associated the descriptions of the security issues in
the results with relevant CWE descriptions to determine the specific
CWE category to which these security issues belong. Initially, two
authors independently matched each description of the security
issue with a CWE ID. In case of disagreement, a discussion was
initiated between the two authors, and one other author (a security
expert) was then involved to provide his assessment. This process
continued until all the descriptions of the security issues in the
results were matched with CWE IDs. Table 7 shows the list of
manually matched CWE IDs and warning messages from CodeQL,
ESLint, and FindBugs results. In the final stage, we performed a
statistical analysis of CWE weaknesses in 156 code snippets that
contained security weaknesses.

Results. Table 8 shows the distribution of CWEs in the code
snippets, including the number of code snippets that contain a cer-
tain CWE (Related Snippets) and the total number of occurrences
(Frequency) of the CWE in the code snippets (we put those CWEs
whose Frequency = 1 in “Others”). Note that one related code snip-
pets may contain multiple instances of specific CWE. In total, we
found 600 CWEs in 435 code snippets. These security weaknesses
were related to 42 types of CWE, indicating that developers face
a variety of security weaknesses when using Copilot. CWE-78: OS
Command Injection is the most frequently occurred CWE, as it was
detected in 15 code snippets (representing 14% of the security weak-
nesses), followed by CWE-330: Use of Insufficiently Random Values,
CWE-703: Improper Check or Handling of Exceptional Conditions ,
CWE-400: Uncontrolled Resource Consumption and CWE-502: Deseri-
alization of Untrusted Data. Some CWEs appeared less frequently,
such as CWE-95: Eval Injection, and CWE-22: Improper Limitation of
a Pathname to a Restricted Directory.

Additionally, many CWEs occur with a probability of less than
1%, for example, CWE-176: Improper Handling of Unicode Encoding,
CWE-312: Cleartext Storage of Sensitive Information, and CWE-326:
Inadequate Encryption Strength. This indicates that the types of
security issues are closely related to the specific scenarios in which
developers use Copilot and make the security issues become ap-
parent, emphasizing the importance of maintaining vigilance and
caution when programming.

Conference’17, July 2017, Washington, DC, USA Y. Fu et al.

Table 7: The warning messages of the scan results by
CodeQL, ESLint, and FindBugs manually matched with

corresponding CWE IDs

Tool Warning Message CWE-ID
CodeQL Reflected server-side cross-site scripting CWE-79
CodeQL Flask app is run in debug mode CWE-215
CodeQL Clear-text logging of sensitive information CWE-532
CodeQL Clear-text storage of sensitive information CWE-312
CodeQL Information exposure through an exception CWE-209
CodeQL Request without certificate validation CWE-295
CodeQL Assignment to constant CWE-682
CodeQL Log injection CWE-117
CodeQL Identical operands CWE-570
CodeQL Incomplete string escaping or encoding CWE-176
CodeQL DOM text reinterpreted as HTML CWE-79

CodeQL Arbitrary file write during archive extraction
(“Zip Slip”) CWE-22

CodeQL Hard-coded credential in API call CWE-798
CodeQL Hard-coded credentials CWE-798
CodeQL Uncontrolled data used in path expression CWE-22
CodeQL Resource not released in destructor CWE-416
CodeQL Missing Dispose call on local IDisposable CWE-690
CodeQL Use of the return value of a procedure CWE-252
CodeQL Dereferenced variable may be null CWE-476
ESLint Generic Object Injection Sink CWE-502
ESLint Function Call Object Injection Sink CWE-20
ESLint Unsafe Regular Expression CWE-20
ESLint Variable Assigned to Object Injection Sink CWE-95

FindBugs M S Dm: Hardcoded constant database pass-
word CWE-798

FindBugs H I Dm: Found reliance on default encoding CWE-116
FindBugs M D ICAST: Integral division result CWE-682
FindBugs H C IL: There is an apparent infinite loop CWE-835

FindBugs M B RV:Exceptional return value of
java.io.File.mkdirs()ignored CWE-252

FindBugs M D NP: Possible null pointer dereference CWE-476

FindBugs MBODR: DatabaseOperate.readDatabase() may
fail to close Connection CWE-404

4.3 RQ3: How many security weaknesses belong
to the CWE Top-25?

Approach. The code in our collected dataset was generated be-
tween June 2021 and June 2023. To compare whether the security
issues in Copilot generated code are widespread in this period, we
chose MITRE 2022 CWE Top-25 list [41] as our baseline. Then, we
compared the CWEs obtained in RQ2 with the CWE Top-25.

Results. The distribution of CWEs found compared to the
MITER list is shown in Table 9. The results show that the CWE
weaknesses present in the code generated by Copilot belong to
eleven CWE types included in the MITER CWE Top-25 list. This
means these are present issues and are currently among the most
common and serious security weaknesses in practice. It is worth
noting that the 237 security issues present in the code snippet
correspond to these 11 CWEs, while another 31 CWEs cover the
remaining 363 security issues. This indicates that the CWE Top-25
weaknesses are also prevalent in the code generated by Copilot.
Therefore, developers using Copilot must pay close attention to
these weaknesses and take appropriate measures to prevent them
before they are integrated into their codebase. At the same time, we
can see that CWE-78: OS Command Injection is the most frequently
occurring weakness from the Top-25 security weaknesses, ranking
sixth in the Top-25 list and first in our RQ2 results. Although CWE-
400: Uncontrolled Resource Consumption is ranked towards the end

Table 8: Distribution of CWEs in code snippets

CWE-ID # Related Code
Snippets

Frequency of
Specific CWE Percentage

CWE-78 15 84 14.0%
CWE-330 34 81 13.5%
CWE-703 20 78 13.0%
CWE-398 11 60 10.0%
CWE-502 15 56 9.3%
CWE-400 22 50 8.3%
CWE-20 10 19 3.1%
CWE-252 2 13 2.1%
CWE-259 6 13 2.1%
CWE-404 3 13 2.1%
CWE-451 3 13 2.1%
CWE-682 2 13 2.1%
CWE-116 3 11 1.8%
CWE-690 3 9 1.5%
CWE-798 5 9 1.5%
CWE-561 4 8 1.3%
CWE-95 4 8 1.3%
CWE-22 4 6 1.0%
CWE-327 5 5 <1%
CWE-532 3 5 <1%
CWE-563 4 4 <1%
CWE-605 4 4 <1%
CWE-89 3 4 <1%
CWE-295 1 3 <1%
CWE-476 1 3 <1%
CWE-775 2 3 <1%
CWE-117 1 2 <1%
CWE-209 1 2 <1%
CWE-215 2 2 <1%
CWE-416 1 2 <1%
CWE-570 2 2 <1%
CWE-664 1 2 <1%
CWE-676 2 2 <1%
CWE-79 1 2 <1%
CWE-94 2 2 <1%
Others =1 <1%
42 Types Total: 600

of the Top-25 list, it is one of the weaknesses with a high occurrence
frequency. Some CWEs with a higher ranking in the Top-25 list do
not appear frequently in Copilot generated code, such as CWE-79:
Cross-site Scripting and CWE-89: SQL Injection.

Table 9: The CWEs that belong to the 2022 CWE Top-25 list

CWE-ID Description # Related
Snippets Frequency

CWE-78 OS Command Injection 15 84
CWE-502 Deserialization of Untrusted Data 15 56

CWE-400 Uncontrolled Resource Consump-
tion 22 50

CWE-20 Improper Input Validation 10 19
CWE-798 Use of Hard-coded Credentials 5 9

CWE-22 Improper Limitation of a Pathname
to a Restricted Directory 4 6

CWE-89 SQL Injection 3 4
CWE-476 NULL Pointer Dereference 1 3
CWE-94 Code Injection 2 2
CWE-416 Use After Free 1 2
CWE-79 Cross-site Scripting 1 2
Total 237

Security Weaknesses of Copilot Generated Code in GitHub Conference’17, July 2017, Washington, DC, USA

5 DISCUSSION
In this section, we explain the study results in Section 5.1 and then
discuss their implications in Section 5.2.

5.1 Interpretation of Results
RQ1: How secure is the code generated by Copilot?
Among the 435 code snippets generated by Copilot, we found that
35.8% of these code snippets contain security weaknesses. Those
weaknesses appear in all six top-used programming languages sup-
ported by Copilot. Furthermore, when it comes to the occurrence of
security issues in code snippets of different programming languages,
it is important to analyze them in conjunction with the popularity
of the languages [23]. In code snippets written in languages like
Python and JavaScript, which are frequently used with Copilot,
there may be a slightly higher number of security issues. However,
overall the proportion of security issues across these six languages
ranges from 25% to 45%, showing no significant difference.

Besides, we also found that CWE-502: Deserialization of Untrusted
Data and CWE-400: Uncontrolled Resource Consumption problems
mainly appeared in code snippets written in Python and JavaScript.
This could be attributed to certain features that made their code
more flexible, such as dynamic typing and dynamic interpretation.
Therefore, developers should pay special attention to the security
of their JavaScript and Python-generated code, taking appropriate
measures to validate input data and manage resources effectively
to minimize security risks. The results of RQ1 suggest that in prac-
tical production, although Copilot can help developers write code
faster and increase productivity, additional security assessments
and fixes are also required to ensure that the generated code does
not introduce potential security risks.
RQ2: What security weaknesses are present in the code snip-
pets generated by GitHub Copilot?
After conducting a security evaluation of 425 code snippets gener-
ated by Copilot, a total of 600 security weaknesses were identified,
involving 42 CWE types, which is around 10% of the CWEs (439
CWE types) in software development [42]. This may be due to the
reason that Copilot generates code in different programming lan-
guages and application scenarios, and a wide variety of application
scenarios may lead to various types of security issues. In addition,
since the Copilot base model (Codex) is trained on publicly available
data that potentially contain various types of security weaknesses,
this can lead to the presence of multiple CWEs in the generated
code by Copilot. This set of 42 CWE types covers many types of
security issues, and Table 10 shows the types of security issues that
these 42 CWEs are relevant to.

The diversity of security weaknesses indicates that developers
using Copilot face various security risks. These risks are diverse,
covering different development environments and application sce-
narios. At the same time, it also reflects the inevitability of security
weaknesses in Copilot generated code. Developers need to have
corresponding security awareness and skills and take appropriate
security measures to avoid these risks in a timely and targeted
manner. In addition, we can see that developers often encounter
CWE-78: OS Command Injection, CWE-330: Use of Insufficiently Ran-
dom Values, andCWE-703: Improper Check or Handling of Exceptional

Table 10: The CWEs and Types of Security issues

Type of Security Issue Relevant CWEs
Web security issue CWE-79, CWE-94, CWE-690, CWE-732
Access control issue CWE-252, CWE-259, CWE-327, CWE-338
Input validation and representation issue CWE-20, CWE-89, CWE-116
Command injection issue CWE-78, CWE-563, CWE-835
SQL injection issue CWE-89, CWE-95
File handling issue CWE-22, CWE-570
Insecure storage CWE-502, CWE-775
Improper error handling CWE-398, CWE-400
Encryption issue CWE-327
Memory management issue CWE-416
Buffer errors CWE-476
Insecure random number CWE-330
Incorrect type conversion CWE-703

Conditions, CWE-502: Deserialization of Untrusted Data, and CWE-
400:Uncontrolled Resource Consumption, which appear in multiple
code snippets and have a high frequency of occurrence. This can
remind developers to take timely and targeted security measures
to mitigate these risks. For example, developers should perform
adequate validation of user inputs. In addition to this, it is also
necessary to restrict the program’s permissions so that they only
access essential resources. The results of RQ2 reveal the security
weaknesses that developers may encounter in an actual production
environment and their frequency of occurrence, which can help de-
velopers be aware of security aspects of code generated by Copilot
and take appropriate measures to address the security weaknesses
in an informed manner.
RQ3:Howmany security weaknesses belong to the CWE Top-
25?
As shown in Table 9, eleven of the CWEs in Copilot generated code
can be found in the 2022 CWE Top-25 list, covering more than 237
security issues (39.5% of 600 identfied CWEs) in our dataset. This
indicates that the commonly acknowledged top 25 weaknesses in
software development, which are considered the most prevalent
and dangerous, are also prevalent in the code generated by Copilot.
Therefore, developers need to pay special attention to these fre-
quently occurring weaknesses and take corresponding measures to
avoid and fix them. We also observed that some vulnerabilities from
the CWE top-25 list were not detected in our scans, indicating that
Copilot may sanitize and prevent specific weaknesses from being
suggested to developers. GitHub is gradually enhancing the security
of Copilot and its underlying model (Codex) [14]. We also identified
31 security weaknesses in the code that do not belong to the CWE
Top-25 list. Although these less common security weaknesses may
not be as widespread as CWE Top-25, attackers can still exploit
them. For example, we only detected one instance of CWE-732:
Incorrect Permission Assignment for Critical Resource in our dataset.
This security weakness is not commonly found in code and only
occurs when specific users have certain permissions. However, it
can lead to significant security risks when it does occur. Developers
should also be aware of these less common security weaknesses to
fully protect their code from attacks.

5.2 Implications
Code Snippets with Security Weaknesses: In practical produc-
tion, practitioners often use Copilot to generate code in six lan-
guages: Python, JavaScript, Java, C++, Go, and C#. These languages

Conference’17, July 2017, Washington, DC, USA Y. Fu et al.

all inevitably produce security weaknesses. We conjecture that
practitioners using Copilot will likely encounter security weak-
nesses, regardless of the programming language used, and security
checks are mandatory. When using Copilot, practitioners should
conduct their own assessment of the generated code with the sup-
port of security analysis tools. They should exercise extreme caution
when attempting to rely entirely on Copilot’s behavior, especially
for the most commonly used languages with Copilot: Python and
JavaScript.
Types of Security Weaknesses in Copilot Generated Code:
Practitioners using Copilot may encounter a variety of security
weaknesses. Our results show that these weaknesses are related to
over 40 CWEs. This finding indicates that there are diverse security
scenarios in production, and practitioners must have the corre-
sponding security awareness and skills and adopt multiple security
prevention measures to address security risks so that they do not
simply accept vulnerable code suggestions. At the same time, our
study reveals the frequency of related CWEs. When using Copilot
to generate code, practitioners should pay particular attention to
specific weaknesses, such as CWE-78: OS Command Injection, CWE-
330: Use of Insufficiently Random Values, CWE-502: Deserialization
of Untrusted Data, CWE-703: Improper Check or Handling of Excep-
tional Conditions, and CWE-400: Uncontrolled Resource Consumption.
Our findings can assist practitioners in proactively preventing and
addressing security issues in a targeted manner.
The CWEs in Copilot Generated Code from the Top-25 CWE
List: Common security weaknesses in software development are
also prevalent in code generated by Copilot. As a good practice,
developers can use the CWE Top-25 list as a guide to understand
which security weaknesses are most common and dangerous in the
generated code and take appropriate measures to improve the code
security. Additionally, the CWE Top-25 provides a standardized
approach for security assessment, and developers can also use it
to conduct security audits of the code generated by Copilot. Devel-
opers should also follow best practices and use code analysis tools
(static, dynamic, or hybrid) to check the suggested code by Copilot
(or any code generation tools) before integrating any code sugges-
tions. Such tools can safeguard the code and help in discovering
weaknesses early.

6 THREATS TO VALIDITY
The validity threats are discussed according to the guidelines in
[32]. Note that we did not consider internal validity threats since we
did not investigate any relationships between variables and results.

Construct Validity is the degree to which a measurement can
explain the theoretical structure and characteristics of the mea-
surement, reflecting the extent to which the studied operational
measures truly represent the researcher’s ideas and the content
investigated based on the research questions. This study has three
threats to the construct validity: (1) Using the keyword-based search
– We used a keyword-based search to collect relevant code snip-
pets from GitHub. The results obtained through the keyword-based
search may not cover all code snippets generated by Copilot on
GitHub. We tried to mitigate this threat by constantly and iter-
atively refining the keywords and using synonyms. (2) Manual
data filtering – We manually screened the results obtained from

the keyword-based search by analyzing the comments, tags, and
other metadata of the code snippets to determine whether they
were generated by Copilot. Since this process was manually done,
it may have been influenced by personal bias. At the same time, we
assumed that all code files contained in projects declared to be writ-
ten by Copilot in markdown files were generated by Copilot, and
we included them in the research data. This has an impact on the
construct validity, as we could not have excluded the possibility of
human-written code files in these projects. (3) Manual association of
CWEs –Wemanually associated some warning messages prompted
by static analysis tools with CWEs. Some warning messages could
be associated with multiple CWEs, while we only focused on as-
signing one most suitable CWE for each warning message. Personal
bias may occur with this step, impacting the final association, and
we mitigated the bias by two authors conducting the association
with the assessment by a security expert.

External Validity refers to the extent to which research results
can be generalized and the degree to which people outside the in-
vestigated cases are interested in the research results. It indicates
whether the research results are representative and can be validated
in similar contexts. Our dataset consists of Copilot generated code
snippets collected from open-source projects on GitHub. During
the filtering process, we excluded code that utilized Copilot to solve
algorithmic problems, aiming to ensure that the collected data gen-
uinely reflected real-world production environments. Due to the
reason that the data from GitHub is not diversified enough, there
are many code snippets from Game projects. The peculiarity of the
data source may make the dataset incomplete, thereby threatening
the external validity of the results. However, GitHub is one of the
largest code hosting platforms in the world, with hundreds of mil-
lions of public code repositories, and is popular among developers
and the technology community. The code snippets obtained from
GitHub are diverse, which mitigates this threat. Furthermore, we
acknowledge the need to collect more diverse code snippets from
different platforms to increase the generalizability of the results.
We will consider adopting more diversified ways or platforms to
collect code. Additionally, due to the limitations of static analysis
tools themselves, these tools could not scan all CWEs, and there
is a degree of false-positives in the scanning results (as the case
with static analysis tools [17, 39]). Although we attempted to use
two static analysis tools to increase the coverage of weaknesses,
these tools may have limited abilities in analyzing some CWEs
with specific error rates, which may impact the completeness and
correctness of the results.

Reliability refers to the extent to which a specific research
method can produce consistent results. We usedmultiple automated
static analysis tools to analyze the Copilot generated code snippets
to improve security weaknesses detection. Developers have widely
used these automated tools. The querying mechanism of these tools
ensures that the scan results remain consistent when used multiple
times. In addition, we performed two rounds of scanning with two
tools for security checks on each code snippet, intending to comple-
ment the results of one tool with the other one. By implementing
these measures, we believe that our research results are reliable
and these threats to reliability are mitigated.

Security Weaknesses of Copilot Generated Code in GitHub Conference’17, July 2017, Washington, DC, USA

7 CONCLUSIONS
Automatic code generation and recommendation has been an active
research area due to the advancement of AI and specifically LLMs.
AI code generation tools such as Copilot can greatly improve the
development efficiency of programmers, but they can also intro-
duce vulnerabilities and security risks. In this paper, we present
the results of an empirical study to analyze security weaknesses in
Copilot generated code found in public GitHub projects. We identi-
fied 435 code snippets generated by Copilot from GitHub projects
and analyzed those snippets for security weaknesses using static
analysis tools. This study aims to help developers understand the
security risks of weaknesses introduced in the code generated by
Copilot (and potentially similar code generation tools). Our results
show: (1) 35.8% of the 435 Copilot generated code snippets contain
security weaknesses, spreading across six programming languages.
(2) The detected security weaknesses are diverse in nature and are
associated with 42 different CWEs. The CWEs that occurred most
frequently are CWE-78: OS Command Injection, CWE-330: Use of
Insufficiently Random Values, and CWE-703: Improper Check or Han-
dling of Exceptional Conditions (3) Among these CWEs, 11 appear
in the MITRE CWE Top-25 list, demonstrating their commonality,
current and severity. These are: CWE-78: OS Command Injection,
CWE-502: Deserialization of Untrusted Data, CWE-400: Uncontrolled
Resource Consumption, CWE-89: SQL Injection, CWE-20: Improper
Input Validation, CWE-22: Improper Limitation of a Pathname to a
Restricted Directory, CWE-94: Code Injection, CWE-476: NULL Pointer
Dereference, CWE-798: Use of Hard-coded Credentials, CWE-79: Cross-
site Scripting, and CWE-416: Use After Free.

In the future, we plan to: (1) collect additional code snippets from
other open source repositories and industrial projects, and code
snippets generated by newer releases of Copilot; (2) analyze and
summarize the application scenarios of these code snippets, study-
ing how practitioners use Copilot and fix the issues in development;
and (3) compare the results with other emerging Generative AI
code generation tools such as CodeWhisperer, aiXcoder, and Code
Llama.

REFERENCES
[1] Owura Asare, Meiyappan Nagappan, and N. Asokan. 2023. Is GitHub’s Copilot

as bad as humans at introducing vulnerabilities in code? Empirical Software
Engineering 28, 6 (2023), Article No. 129.

[2] Shraddha Barke, Michael B James, and Nadia Polikarpova. 2022. Grounded
copilot: How programmers interact with code-generating models. arXiv preprint
arXiv:2206.15000 (2022).

[3] Brett A Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2022. Programming Is Hard–Or at Least It
Used to Be: Educational Opportunities And Challenges of AI Code Generation.
arXiv preprint arXiv:2212.01020 (2022).

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in Neural
Information Processing Systems 33 (2020), 1877–1901.

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[6] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh,
Michel C Desmarais, Zhen Ming, et al. 2022. GitHub Copilot AI pair programmer:
Asset or Liability? arXiv preprint arXiv:2206.15331 (2022).

[7] Trevor Dunlap, Seaver Thorn, William Enck, and Bradley Reaves. 2023. Finding
Fixed Vulnerabilities with Off-the-Shelf Static Analysis. In 2023 IEEE 8th European
Symposium on Security and Privacy (EuroS&P). IEEE, 489–505.

[8] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian.
2008. Selecting Empirical Methods for Software Engineering Research. Springer,

285–311.
[9] Michael D Ernst. 2003. Static and dynamic analysis: Synergy and duality. In

Proceedings of the ICSE Workshop on Dynamic Analysis (WODA). ACM, 24–27.
[10] Yujia Fu, Peng Liang, Amjed Tahir, Zengyang Li, Mojtaba Shahin, and Jiaxin

Yu. 2023. Dataset of the Paper “Security Weaknesses of Copilot Generated Code in
GitHub”.

[11] GitHub. [n. d.]. GitHub Copilot for Individuals. https://docs.github.com/en/
copilot/overview-of-github-copilot/about-github-copilot-for-individuals

[12] GitHub. 2021. CodeQL (1.6 ed.). GitHub. https://securitylab.github.com/tools/
codeql.

[13] GitHub. 2021. Using the CodeQL CLI. GitHub. https://docs.github.com/zh/code-
security/codeql-cli/using-the-codeql-cli/analyzing-databases-with-the-
codeql-cli.

[14] GitHub. 2023. GitHub CopilotX Preview. https://github.com/features/preview/
copilot-x Accessed: 2023-07-28.

[15] Jingxuan He and Martin Vechev. 2023. Controlling Large Language Models to
Generate Secure and Vulnerable Code. arXiv preprint arXiv:2302.05319 (2023).

[16] Emanuele Iannone, Roberta Guadagni, Filomena Ferrucci, Andrea De Lucia, and
Fabio Palomba. 2022. The secret life of software vulnerabilities: A large-scale
empirical study. IEEE Transactions on Software Engineering 49, 1 (2022), 44–63.

[17] Hong Jin Kang, Khai Loong Aw, and David Lo. 2022. Detecting false alarms
from automatic static analysis tools: How far are we?. In Proceedings of the 44th
International Conference on Software Engineering (ICSE). ACM, 698–709.

[18] Arvinder Kaur and Ruchikaa Nayyar. 2020. A comparative study of static code
analysis tools for vulnerability detection in c/c++ and java source code. Procedia
Computer Science 171 (2020), 2023–2029.

[19] Raphaël Khoury, Anderson R Avila, Jacob Brunelle, and Baba Mamadou Camara.
2023. How Secure is Code Generated by ChatGPT? arXiv preprint arXiv:2304.09655
(2023).

[20] Sila Lertbanjongngam, Bodin Chinthanet, Takashi Ishio, Raula Gaikovina Kula,
Pattara Leelaprute, Bundit Manaskasemsak, Arnon Rungsawang, and Kenichi
Matsumoto. 2022. An Empirical Evaluation of Competitive Programming AI: A
Case Study of AlphaCode. In Proceedings of the 16th IEEE International Workshop
on Software Clones (IWSC). IEEE, 10–15.

[21] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. 2022.
Competition-level code generation with alphacode. Science 378, 6624 (2022),
1092–1097.

[22] Zongjie Li, Chaozheng Wang, Zhibo Liu, Haoxuan Wang, Shuai Wang, and
Cuiyun Gao. 2022. CCTEST: Testing and Repairing Code Completion Systems.
arXiv preprint arXiv:2208.08289 (2022).

[23] mend.io. 2023. The Most Secure Programming Languages. https://www.mend.
io/most-secure-programming-languages/

[24] HusseinMozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. 2022. Reading
Between the Lines: Modeling User Behavior and Costs in AI-Assisted Program-
ming. arXiv preprint arXiv:2210.14306 (2022).

[25] Nhan Nguyen and Sarah Nadi. 2022. An empirical evaluation of GitHub copilot’s
code suggestions. In Proceedings of the 19th IEEE/ACM International Conference
on Mining Software Repositories (MSR). IEEE, 1–5.

[26] OpenAI. [n. d.]. Codex. https://openai.com/blog/openai-codex.
[27] OWASP. [n. d.]. Source Code Analysis Tools. https://owasp.org/www-community/

Source_Code_Analysis_Tools.
[28] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and

Ramesh Karri. 2022. Asleep at the keyboard? assessing the security of github
copilot’s code contributions. In Proceedings of the 43rd IEEE Symposium on Security
and Privacy (SP). IEEE, 754–768.

[29] Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. 2022. Do Users
Write More Insecure Code with AI Assistants? arXiv preprint arXiv:2211.03622
(2022).

[30] Rohith Pudari andNeil A Ernst. 2023. FromCopilot to Pilot: Towards AI Supported
Software Development. arXiv preprint arXiv:2303.04142 (2023).

[31] Md Omar Faruk Rokon, Risul Islam, Ahmad Darki, Evangelos E Papalexakis,
and Michalis Faloutsos. 2020. SourceFinder: Finding Malware Source-Code from
Publicly Available Repositories in GitHub. In Proceedings of the 23rd International
Symposium on Research in Attacks, Intrusions and Defenses (RAID). USENIX, 149–
163.

[32] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engineering 14
(2009), 131–164.

[33] Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh Karri, Brendan Dolan-
Gavitt, and Siddharth Garg. 2022. Security Implications of Large Language Model
Code Assistants: A User Study. arXiv preprint arXiv:2208.09727 (2022).

[34] Advait Sarkar, Andrew D Gordon, Carina Negreanu, Christian Poelitz, Sruti Srini-
vasa Ragavan, and Ben Zorn. 2022. What is it like to program with artificial
intelligence? arXiv preprint arXiv:2208.06213 (2022).

[35] Mohammed Latif Siddiq, Shafayat H Majumder, Maisha R Mim, Sourov Jajodia,
and Joanna CS Santos. 2022. An Empirical Study of Code Smells in Transformer-
based Code Generation Techniques. In Proceedings of the 22nd IEEE International

https://docs.github.com/en/copilot/overview-of-github-copilot/about-github-copilot-for-individuals
https://docs.github.com/en/copilot/overview-of-github-copilot/about-github-copilot-for-individuals
https://securitylab.github.com/tools/codeql
https://securitylab.github.com/tools/codeql
https://docs.github.com/zh/code-security/codeql-cli/using-the-codeql-cli/analyzing-databases-with-the-codeql-cli
https://docs.github.com/zh/code-security/codeql-cli/using-the-codeql-cli/analyzing-databases-with-the-codeql-cli
https://docs.github.com/zh/code-security/codeql-cli/using-the-codeql-cli/analyzing-databases-with-the-codeql-cli
https://github.com/features/preview/copilot-x
https://github.com/features/preview/copilot-x
https://www.mend.io/most-secure-programming-languages/
https://www.mend.io/most-secure-programming-languages/
https://openai.com/blog/openai-codex
https://owasp.org/www-community/Source_Code_Analysis_Tools
https://owasp.org/www-community/Source_Code_Analysis_Tools

Conference’17, July 2017, Washington, DC, USA Y. Fu et al.

Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE,
71–82.

[36] Mohammed Latif Siddiq and Joanna CS Santos. 2022. SecurityEval dataset: mining
vulnerability examples to evaluate machine learning-based code generation
techniques. In Proceedings of the 1st International Workshop on Mining Software
Repositories Applications for Privacy and Security (MSR4P&S). ACM, 29–33.

[37] Dominik Sobania, Martin Briesch, and Franz Rothlauf. 2022. Choose your pro-
gramming copilot: a comparison of the program synthesis performance of github
copilot and genetic programming. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO). ACM, 1019–1027.

[38] Stackscale. 2021. The 9 most popular programming languages to learn in
2021. https://www.stackscale.com/blog/most-popular-programming-languages-
to-learn-in-2021/ Accessed on 2023-07-27.

[39] Li Sui, Jens Dietrich, Amjed Tahir, and George Fourtounis. 2020. On the recall of
static call graph construction in practice. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering (ICSE). ACM, 1049–1060.

[40] The MITRE Corporation. [n. d.]. CWE - Common Weakness Enumeration. https:
//cwe.mitre.org/data/index.html.

[41] The MITRE Corporation. 2022. CWE - 2022 CWE Top 25. https://cwe.mitre.org/
top25/archive/2022/2022_cwe_top25.html#cwe_top_25.

[42] The MITRE Corporation. 2023. CWE VIEW: Software Development. https:
//cwe.mitre.org/data/definitions/699.html Accessed: 2023-07-28.

[43] Kristín Fjóla Tómasdóttir, Mauricio Aniche, and Arie Van Deursen. 2018. The
adoption of javascript linters in practice: A case study on eslint. IEEE Transactions
on Software Engineering 46, 8 (2018), 863–891.

[44] Catherine Tony, Markus Mutas, Nicolás E Díaz Ferreyra, and Riccardo Scandari-
ato. 2023. LLMSecEval: A Dataset of Natural Language Prompts for Security
Evaluations. arXiv preprint arXiv:2303.09384 (2023).

[45] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation vs.
experience: Evaluating the usability of code generation tools powered by large
language models. In Proceedings of the 40th ACM Conference on Human Factors in
Computing Systems (CHI). ACM, 1–7.

[46] Richard J Waldinger and Richard CT Lee. 1969. PROW: A step toward auto-
matic program writing. In Proceedings of the 1st International Joint Conference on
Artificial Intelligence (IJCAI). ACM, 241–252.

[47] Dakota Wong, Austin Kothig, and Patrick Lam. 2022. Exploring the Verifiability
of Code Generated by GitHub Copilot. arXiv preprint arXiv:2209.01766 (2022).

[48] Burak Yetiştiren, Işık Özsoy, Miray Ayerdem, and Eray Tüzün. 2023. Evalu-
ating the Code Quality of AI-Assisted Code Generation Tools: An Empirical
Study on GitHub Copilot, Amazon CodeWhisperer, and ChatGPT. arXiv preprint
arXiv:2304.10778 (2023).

[49] Burak Yetistiren, Isik Ozsoy, and Eray Tuzun. 2022. Assessing the quality of
GitHub copilot’s code generation. In Proceedings of the 18th International Confer-
ence on Predictive Models and Data Analytics in Software Engineering (PROMISE).
ACM, 62–71.

https://www.stackscale.com/blog/most-popular-programming-languages-to-learn-in-2021/
https://www.stackscale.com/blog/most-popular-programming-languages-to-learn-in-2021/
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html#cwe_top_25
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html#cwe_top_25
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html

	Abstract
	1 Introduction
	2 Related Work
	2.1 AI-assisted Code Generation Tools
	2.2 Security of Code Generation Techniques and LLMs
	2.3 Security Static Analysis

	3 Research Design
	3.1 Research Goal and Questions
	3.2 Data Collection and Filtering
	3.3 Data Pre-processing and Analysis

	4 Results
	4.1 RQ1: How secure is the code generated by Copilot?
	4.2 RQ2: What security weaknesses are present in the code snippets generated by Copilot?
	4.3 RQ3: How many security weaknesses belong to the CWE Top-25?

	5 Discussion
	5.1 Interpretation of Results
	5.2 Implications

	6 Threats to Validity
	7 Conclusions
	References

