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Abstract. Pre-pruning and Post-pruning are two standard techniques for handling noise in decision tree learning.
Pre-pruning deals with noise during learning, while post-pruning addresses this problem after an overfitting theory
has been learned. We first review several adaptations of pre- and post-pruning techniques for separate-and-conquer
rule learning algorithms and discuss some fundamental problems. The primary goal of this paper is to show how
to solve these problems with two new algorithms that combine and integrate pre- and post-pruning.
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1. Introduction

Separate-and-conquer rule-learning systems have recently gained popularity through the
success of the Inductive Logic Programming algorithmFoil (Quinlan, 1990, Quinlan &
Cameron-Jones, 1995). In this paper, we will analyze different pruning techniques for
this type of inductive rule learning algorithm and discuss some of their problems. Its
main contributions are two new algorithms:Top-Down Pruning(TDP), an approach that
combines pre- and post-pruning, andIncremental Reduced Error Pruning(I-REP), a very
efficient integration of pre-and post-pruning.

Pruning is the common framework for avoiding the problem ofoverfittingnoisy data.
The basic idea is to incorporate a bias towards simpler theories in order to avoid complex
rules with low coverage that contain irrelevant literals that have only been added to exclude
noisy examples.

Pre-pruningmethods deal with noise during learning. Instead of trying to find a theory
that is complete and consistent with the given training data, heuristics (i.e.,stopping criteria)
are used to relax this constraint by stopping the learning process although some positive
examples may not yet be explained and some of the negative examples may still be covered
by the current theory. The final theory is learned in one pass (see figure 1). Most separate-
and-conquer rule learners, like CN2 (Clark & Niblett, 1989),Foil (Quinlan, 1990), and
Fossil (Fürnkranz, 1994a), use this form of noise handling.

Another family of algorithms deals with noise by simplifying a previously learned over-
fitting theory. Thesepost-pruningalgorithms typically first induce a theory that is complete
and consistent with the training data. Then, this theory is examined in order to discard rules
and conditions that only seem to explain characteristics of the particular training set and do
not reflect true regularities of the domain (see figure 1). The quality of the learned rules
and conditions is commonly evaluated on a separate set of training examples that have not
been seen during learning. Post-pruning algorithms includeReduced Error Pruning(REP)
(Brunk & Pazzani, 1991) andGrow (Cohen, 1993). Both have been shown to be very
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Figure 1. Pruning methods for separate-and-conquer rule learning algorithms.

effective in noise-handling. However, they are also inefficient, because they waste time by
learning an overfitting concept description and subsequently pruning a significant portion
of its rules and conditions.

One remedy for this problem is tocombinepre- and post-pruning (figure 1, part 3). Pre-
pruning heuristics are used to reduce (not entirely eliminate) the amount of overfitting,
so that learning and pruning will be more efficient. Our particular implementation of
this approach,Top-Down Pruning(TDP) (Fürnkranz, 1994b), uses a simple algorithm to
generate a set of theories pruned to different degrees in a top-down, simple-to-complex
order. The accuracies of the theories are evaluated on a separate set of data and the most
complex theory with an accuracy comparable to the accuracy of the best theory so far will be
submitted to a subsequent post-pruning phase. Experiments show that this initial top-down
search for a better starting theory can be more efficient than the overfitting phase of classical
post-pruning algorithms. As this search will typically return a theory that is closer to the
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procedure SeparateAndConquer(Examples)

Theory= ∅
while Positive(Examples)6= ∅

Clause= ∅
Cover= Examples
while Negative(Cover) 6= ∅

Clause= Clause∪ FindLiteral(Clause,Cover)
Cover= Cover(Clause,Cover)

Theory= Theory∪ Clause
Examples= Examples− Cover

return(Theory)

Figure 2. A separate-and-conquer rule learning algorithm

final theory, the post-pruning phase will also be sped up, because fewer pruning operations
are needed to get to the final theory.

Motivated by the success of this method, we have developed a more rigorous approach that
tightly integratespre- and post-pruning. Instead of learning an entire theory and pruning
it thereafter,Incremental Reduced Error Pruning(I-REP) (Fürnkranz & Widmer, 1994)
prunes single clauses right after they have been learned. Thus, by using post-pruning
methods as a pre-pruning stopping criterion (as sketched in figure 1), this new algorithm
avoids learning an overfitting theory and achieves a significant speedup in noisy domains.
Because it avoids some problems with other approaches that incorporate post-pruning,
I-REP also learns more accurate theories.

2. Separate-and-conquer rule learning algorithms

Many rule learning algorithms including the propositional learner CN2 (Clark & Niblett,
1989), and the relational learnerFoil and its successors (Quinlan &
Cameron-Jones, 1995) construct rules using theseparate-and-conquerstrategy. The term
separate-and-conquer was coined by Pagallo and Haussler (1990) in the context of learn-
ing decision lists, but the strategy has its origins in the AQ family of covering algorithms
(Michalski, 1980, Michalski, Mozetiˇc, Hong, & Lavrač, 1986). F¨urnkranz (1996) presents
an extensive survey of this family of learning algorithms.

Figure 2 sketches the basicSeparateAndConquer rule learning algorithm. The input
to the algorithm is a set of positive and negative examples of the target concept. The output
is a set of rules that are able to prove the given positive examples, but none of the negative
examples. We will represent rules in the form of PROLOG clauses as inFoil:

Concept :- Literal1, Literal2, . . . , LiteralN.

In propositional learning, literals can only be tests for the values of certain attributes of the
concept, while in relational learning (as inFoil) one can also specify relations between
these attributes, so that the head and the conditions of a rule can be general PROLOG
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literals. We will consider a set of rules as a PROLOG program, i.e., the rules will be
checked in order until one of them “fires”. The example that has satisfied the conditions
of the rule will consequently be classified as an instance of the target concept. If no rule
“fires”, the instance will not be considered as a member of the concept. Although we will
use PROLOG terminology in the rest of the paper — rules will be referred to asclauses,
while their conditions will be denoted asliterals — our results also apply to proposi-
tional separate-and-conquer rule learning algorithms like CN2 (Clark & Niblett, 1989) or
SWAP-1 (Weiss & Indurkhya, 1991).

SeparateAndConquer learns clauses by successively adding literals to their right-
hand side until the clause covers no more negative examples. All covered positive examples
are then separated from the training set and the next rule is learned from the remaining
examples (hence the nameseparate-and-conquer). Rules are learned in this way until no
positive examples are left. This method guarantees that each positive example is covered by
at least one rule (completeness), and that no rule covers a negative example (consistency).

However, the basicSeparateAndConquer algorithm has a severe drawback: real-
world data may be noisy. Noisy data are a problem for many learning algorithms, because
it is hard to distinguish between rare exceptions and erroneous examples. As we have seen,
the algorithm of figure 2 forms a complete and consistent theory, i.e., it tries to cover all of
the positive and none of the negative examples. In the presence of noise, it will therefore
attempt to add literals to rules in order to exclude positive examples that have a negative
classification in the training set and add rules in order to cover negative examples that have
erroneously been classified as positive. Thus, complete and consistent theories generated
from noisy examples are typically very complicated and exhibit low predictive accuracy on
classifying unseen examples. This problem is known asoverfitting the noise.

One remedy for this problem is to try to increase the predictive accuracy by considering
not only complete and consistent theories, but also simple approximate theories. A simple
theory that covers most positive examples and excludes most negative examples of the
training set will often be more predictive than a complex, complete and consistent theory.
Such simple theories are usually discovered usingpruningheuristics.

3. Pre-pruning

Figure 3 shows an adaptation of the simpleSeparateAndConquer algorithm that han-
dles noisy data with apre-pruningheuristic. The algorithm is identical to the one of figure 2
except that both loops can terminate not only when no more negative examples are covered
(inner loop) or when all positive examples are covered (outer loop), but also when stopping
criteria are satisfied. TheLiteralStoppingCriterion decides heuristically when to
stop adding literals to a clause, while theClauseStoppingCriterion decides when to
stop adding clauses to the theory. If the current rule with the new literal added satisfies the
LiteralStoppingCriterion, the innerwhile loop will terminate and the inconsistent
clause will be added to the concept description, unless theClauseStoppingCriterion

is satisfied. In that case, it is assumed that no further clause can be found that covers the
remaining positive examples and the incomplete theory without the clause that triggered the
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procedure PrePruning(Examples)

Theory= ∅
while Positive(Examples)6= ∅

Clause = ∅
Cover= Examples
while Negative(Cover) 6= ∅

NewClause= Clause∪ FindLiteral(Clause, Cover)
if LiteralStoppingCriterion(Theory,NewClause,Cover)

exit while

Clause= NewClause
Cover= Cover(Clause,Cover)

if ClauseStoppingCriterion(Theory,Clause,Cover)
exit while

Theory= Theory∪ Clause
Examples= Examples− Cover

return(Theory)

Figure 3. A rule learning algorithm using pre-pruning

criterion is returned as the final theory. The remaining positive examples are thus considered
to be noisy and will be classified as negative by the returned theory.

Most separate-and-conquer algorithms employ stopping criteria for noise handling. Among
them, the most commonly used are:

• Encoding Length Restriction: This heuristic used in the Inductive Logic Programming
algorithmFoil (Quinlan, 1990) is based on the Minimum Description Length principle
(Rissanen, 1978). It tries to avoid learning complicated rules that cover only a few
examples by making sure that the number of bits that are needed to encode a clause
is less than the number of bits needed to encode the instances covered by it.1 When
no literal can be added without exceeding this limit, the incomplete clause is added
provided that a certain percentage (usually 80%) of the examples it covers is positive.

• Significance Testingwas first used in the propositional CN2 induction algorithm (Clark
& Niblett, 1989) and later on in the relational learnermFoil (Džeroski & Bratko, 1992).
It tests for significant differences between the distribution of positive and negative ex-
amples covered by a rule and the overall distribution of positive and negative examples
by comparing the likelihood ratio statistic to aχ2 distribution with 1 degree of freedom
at the desired significance level.2 Insignificant rules are rejected.

• The Cutoff Stopping Criterioncompares the heuristic evaluation of a literal to a user-set
threshold and only admits literals that have an evaluation above thiscutoff. This simple
stopping criterion was first employed in the relational separate-and-conquer learning
systemFossil (Fürnkranz, 1994a). As it forms the basis of the top-down pruning
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approach, which we will discuss in section 5, we describeFossil in more detail in the
following section.

3.1. Fossil

Fossil (Fürnkranz, 1994a) is a relational separate-and-conquer learning algorithm that
uses a search heuristic based on statistical correlation.

SupposeFossil has learned an incomplete clause, which currently coversm instances,
p positive andn negative. Of thesem instances, a candidate literal will coverc instances
and leaveu instances uncovered. Of thec covered instances, there will bepc positive
andnc negative instances. Likewise,nu negative andpu positive examples will remain
uncovered by the literal. An optimal literal will perfectly discriminate between all positive
and negative instances, i.e., there will be nofalse positives(nc = 0) and nofalse negatives
(pu = 0).

We now arbitrarily assign the numeric values+1 to positive examples and−1 to negative
instances. Similarly we assign+1 to all covered instances and−1 to all uncovered instances.
Each of them instances is now associated with two numbers(PN,CU) and we will measure
their correspondence by computing their correlation coefficient. Thecorrelation coefficient
of PN andCU is defined as

corr(PN,CU) = E((PN−E(PN))×(CU−E(CU)))
Var(PN)×Var(CU)

= E(PN×CU)−E(PN)×E(CU)
Var(PN)×Var(CU) (1)

The expected values in (1) will be estimated by the means

E(PN) =
p− n
m

, E(CU) =
c− u
m

, (2)

As all values ofPN andCU can only be+1 or−1, the variance can be simplified to

Var(X) = E(X2)− E(X)2 = 1− E(X)2 (3)

Finally, asPN × CU is +1 for all covered positive and uncovered negative examples
and−1 for all uncovered positive and covered negative examples, we get

E(PN × CU) =
pc + nu − pu − nc

m
(4)

The partial results (2) – (4) will be substituted into the formula for the correlation
coefficient (1) resulting in a value between−1 and +1. corr(PN,CU) = +1 indi-
cates a perfect match between the new literal and the examples covered so far, whereas
corr(PN,CU) = −1 shows that the literal classifies all positive examples as negative and
vice versa, i.e., that its negation will be a perfect choice. A correlation value of0 signals
that the literal and the classification of the examples are independent. The literalL with
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the highest absolute value of the correlation coefficient (or its negation if the sign of the
coefficient is negative) is finally chosen to extend the partial clause.

Utilizing the fact that each literal has an evaluation between0 and1, Fossil employs the
cutoff stopping criterion. The user can require that all literals considered for clause extension
must have a certain minimum correlation value, theCutoffparameter. Different settings of
the value will cause different amounts of pre-pruning. A setting ofCutoff = 0.0 results in
learning a complete and consistent theory for the training set, because all correlation values
are≥ 0.0 and thus no literals will be excluded. On the other hand, an empty theory will
be learned atCutoff = 1.0, because only trivial learning problems have background literals
with a correlation= 1.0 (e.g.parent(A,B) :- child(B,A)).
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Figure 4. Accuracy and complexity vs. cutoff in a noisy domain

Figure 4 shows a typical plot of accuracy and theory complexity (number of literals in the
learned theory) vs. different values of the cutoff parameter for the commonly used KRK
endgame classification task using 500 training examples with 10% noise.3 The most accurate
theories are found for cutoff values between approximately0.25 and0.35. Higher cutoff
values result in too simple theories, while lower settings of the cutoff obviously result in
overfitting of the data. Also note that the differences in cutoff values for neighboring theories
decrease with increasing theory complexity. Contrary to figure 8, where the most complex
theory has been learned with a cutoff of 0.36 from a noise-free data set, this indicates that
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for lower cutoffs more and more literals have a correlation above this threshold, several of
them fitting noisy examples by chance.

Fossil’s cutoff parameter may therefore be viewed as a means for directly controlling
theOverfitting Avoidance Bias(Schaffer, 1993, Wolpert, 1993). A setting ofCutoff = 0.3
is a good general heuristic which seems to be independent of the noise level in the data.
Fürnkranz (1994a) discusses this in more detail and comparesFossil toFoil andmFoil.

4. Post-pruning

While pre-pruning approaches try to avoid overfitting during rule generation,post-pruning
approaches at first ignore the problem of overfitting and learn a complete and consistent
theory. The quality of this theory is then estimated with some quality measure (usually
predictive accuracy). If this quality measure can be improved by simplifying the theory,
this will be repeatedly done until all further simplifications would harm the quality of the
theory.

Post-pruning approaches have been commonly used in decision tree learning algorithms
(Breiman, Friedman, Olshen, & Stone, 1984, Quinlan, 1987, Niblett & Bratko, 1987)
Mingers (1989) and Esposito, Malerba, and Semeraro (1993) present an overview and
comparison of various approaches.

4.1. Reduced Error Pruning

The most common among these methods isReduced Error Pruning (REP). Pagallo and
Haussler (1990), Weiss and Indurkhya (1991), and Brunk and Pazzani (1991) employ a
straightforward adaptation of REP to the separate-and-conquer rule learning framework.
First, the training data are split into two subsets: agrowing set(usually 2/3) and apruning
set (1/3). In the first phase, no attention is paid to the noise in the data and a concept
description that covers all of the positive and none of the negative examples is learned from
the growing set. The resulting theory is then repeatedly simplified by greedily deleting
literals and rules from the theory until any further deletion would result in a decrease of
predictive accuracy as measured on the pruning set. Pseudo-code for this algorithm is given
in figure 5.

The subroutineBestSimplification selects the theory with the highest accuracy on
the pruning set from the set of simplifications of the current theory. Simplifications that are
usually tried are deleting an entire clause, or deleting the last literal of a clause. Variants
of REP can also employ additional simplification operators like deleting each literal of a
clause, deleting a final sequence of literals (Cohen, 1993), or finding the best replacement of
a literal (Weiss & Indurkhya, 1991). If the accuracy of the best simplification is not below
the accuracy of the unpruned theory, REP will continue to prune the new theory. This is
repeated until the accuracy of the best pruned theory is below that of its predecessor.

REP has been shown to learn more accurate theories than the pre-pruning algorithm
Foil in the KRK domain at several levels of noise (Brunk & Pazzani, 1991). However,
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procedure PostPruning(Examples, SplitRatio)

SplitExamples(SplitRatio, Examples, GrowingSet, PruningSet)
Theory =SeparateAndConquer(GrowingSet)
loop

NewTheory =BestSimplification(Theory,PruningSet)
if Accuracy(NewTheory,PruningSet)<

Accuracy(Theory,PruningSet)
exit loop

Theory = NewTheory
return(Theory)

Figure 5. A post-pruning algorithm

this straightforward adaptation of REP brings several problems for separate-and-conquer
rule-learning algorithms, as we will see in the next section.

4.2. Problems with Reduced Error Pruning

Although REP is quite effective in raising predictive accuracy in noisy domains (Brunk &
Pazzani, 1991), it has several shortcomings.

Complexity

REP’s time complexity has been shown to be as bad asΩ(n4) for noisy data (n being the
number of examples).4 We will follow Cohen (1993) and present an intuitive sketch of the
arguments used in deriving these results. Formal proofs have been derived by Cameron-
Jones (1996). We assume a propositional dataset consisting ofn examples, each described
with a number of binary attributes that is fixed and independent ofn.5 A constant fraction of
the examples has a random classification, i.e.,Θ(n) examples form incompressible noise.
Following Cohen (1993) we further assume that each noisy example has to be covered by
a separate rule, i.e., noisy data will produceΘ(n) rules.6 Each of these rules will need
Θ(logn) tests for discriminating the noisy example from other examples, because each test
for a binary attribute will exclude about half of the random instances. Thus, the size of the
overfitting theory isΘ(n logn) literals.

In each step of the pruning phase, each of theΘ(n) clauses can be simplified by deleting
the last literal or deleting the whole clause, i.e., the theory can be simplified inΘ(n)
different ways. Each simplification has to be tested on the pruning set in order to select
the simplification with the highest accuracy. For theΘ(n) examples of the pruning set that
will be classified as negative by a theory, at least the first literals of allΘ(n) clauses have to
be evaluated, so that the complexity of testing a theory isΩ(n2). If we further assume that
REP works as intended, it should prune the overfitting theory to the correct theory, whose
size should be independent of the size of training set (provided it has a certain minimum
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size). Therefore, REP must at least remove all but a constant number of theΘ(n) clauses
of the overfitting theory, i.e., it has to loopΩ(n) times (when it frequently prunes single
literals there may be considerably more iterations). Thus, we get a total cost ofΩ(n4).7

With similar arguments, Cohen (1993) has derived a complexity bound ofΩ(n2 logn)
for the initial growing phase. This lower bound is tight, because each of theΘ(n logn)
literals in the overfitting theory has been tested on at mostO(n) examples of the growing
set. This result shows that the costs of pruning will outweigh the costs of generating the
initial concept description, which already are higher than the costs of using a pre-pruning
algorithm that entirely avoids overfitting.

Bottom-up hill-climbing

REP employs a greedy hill-climbing strategy. Literals and clauses will be deleted from
the concept definition so that predictive accuracy on the pruning set is greedily maximized.
When each possible operator leads to a decrease in predictive accuracy, the search process
stops at this local maximum.

However, in noisy domains the theory that has been generated in the growing phase will
be much too complex (see figure 4). REP has to prune a significant portion of this theory and
has ample opportunity to err on its way. Therefore, we can expect REP’s complex-to-simple
search to be not only slow, but also inaccurate on noisy data.

Separate-and-conquer strategy

Post-pruning algorithms originate from research in decision tree learning where usually
the well-knowndivide-and-conquerlearning strategy is used. At each node, the current
training set is divided into disjoint sets according to the outcome of the chosen test. After
this, the algorithm is recursively applied to each of these sets independently.

Although the separate-and-conquer approach shares many similarities with the divide-
and-conquer strategy, there is one important difference: pruning of branches in a decision
tree will never affect the neighboring branches, whereas pruning of literals of a rule will
affect all subsequent rules. Figure 6a illustrates how post-pruning works in decision tree
learning. The right half of the overfitting tree covers the sets C and D of the training
instances. When the pruning algorithm decides to prune these two leaves, their ancestor
node becomes a leaf that now covers the examplesC ∪D. The left branch of the decision
tree is not influenced by this operation.

On the other hand, pruning a literal from a clause means that the clause is generalized, i.e.,
it will cover more positive and negative instances. Consequently, those additional positive
and negative instances should be removed from the training set so that they cannot influence
the learning of subsequent clauses. In the example of figure 6b, the first of three rules is
simplified and now covers not only the examples its original version has covered, but also all
of the examples that the third rule has covered and several of the examples that the second
rule has covered. While the third rule could easily be removed by a post-pruning algorithm,
the situation is not as simple with the remaining set of examples B2. The second rule will
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Figure 6a.Post-pruning in divide-and-conquer learning algorithms
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Figure 6b.Post-pruning in separate-and-conquer learning algorithms.

naturally cover all examples of the set B2, because it has been learned in order to cover the
examples of its superset B. However, it might well be the case that a different rule could
be more appropriate for discriminating the positive examples in B2 from the remaining
negative examples. As pruning literals from a clause can only generalize the concept, i.e.,
increase the set of covered examples, a post-pruning algorithm has no means for adjusting
the second rule to this new situation. Thus, the learner may be lead down a garden path,
because the set of examples that remain uncovered by the unpruned clauses at the beginning
of a theory may yield a different evaluation of candidate literals for subsequent clauses than
the set of examples that remain uncovered by the pruned versions of these clauses. A wrong
choice of a literal cannot be undone by pruning.

4.3. TheGrow algorithm

To solve some of the problems of section 4.2, in particular efficiency, Cohen (1993) has
proposed a top-down post-pruning algorithm based on a technique used by Pagallo and
Haussler (1990). Like REP, theGrow algorithm first finds a theory that overfits the
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data. But instead of pruning this intermediate theory until any further deletion results in a
decrease of accuracy, it uses it to grow a pruned theory. For this purpose,Grow augments
the intermediate theory with generalizations of all its clauses by repeatedly deleting a final
sequence of literals from each clause so that its error on thegrowingset increases the least.
Then, it iteratively selects clauses from this expanded theory to form the final concept
description. When no clause further improves this theory’s predictive accuracy on the
pruning set,Grow stops.

Thus,Grow improves upon REP by replacing the bottom-up hill-climbing search of
REP with a top-down approach. Instead of removing the most useless clause or literal from
the overfitting theory, it adds the most promising generalization of a rule to an initially
empty theory. It has been experimentally confirmed that this results in a significant gain in
efficiency, along with a slight gain in accuracy (Cohen, 1993). However, Cameron-Jones
(1996) has demonstrated that the asymptotic time complexity of theGrow post-pruning
method is still above the complexity of the initial rule growing phase.

The explanation for the speedup that can be gained with the top-down strategy is that it
starts from the empty theory, which in many noisy domains is much closer to the final theory
than the overfitting theory. For example, compare the complexities of the most complex
theory (Cutoff = 0.0) and the best theories (0.25 ≤ Cutoff ≤ 0.35) in figure 4.

Thus, it is not surprising thatGrow has been shown to outperform REP on a variety of
data sets (Cohen, 1993).8 Nevertheless, it still suffers from the inefficiency caused by the
need of generating an overly specific theory in a first pass.

5. Combining pre- and post-pruning

In section 4, we have seen that the intermediate theory resulting from the initial overfitting
phase can be much more complex than the final theory. Post-pruning is very inefficient in
this case, because most of the work performed in the learning phase has to be undone in the
pruning phase.

A natural solution to this problem would be to start the pruning phase with a simpler
theory. Cohen (1993) has first investigated this idea by combining the efficient post-pruning
algorithmGrow (see section 4.3) with some weak pre-pruning heuristics that speed up the
learning phase. The goal of pre-pruning in this context is not to entirely prevent overfitting,
but to reduce its amount so that a subsequent post-pruning phase has to do less work and is
less likely to go wrong.

However, there is always the danger that a predefined stopping criterion will return an
overly simple theory. In this section, we will therefore discuss an alternative approach that
searches for an appropriate starting point for the post-pruning phase.

5.1. Top-Down Pruning

One advantage ofFossil’s simple and efficient cutoff stopping criterion is its closeness to
the search heuristic (see section 3.1) .Fossil needs to do a mere comparison between the
heuristic value of the best candidate literal and the cutoff value in order to decide whether to
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procedure AllTheories(Examples)

Cutoff= 1.0
Theories= ∅
while (Cutoff> 0.0) do

Theory= Fossil(Examples,Cutoff)
Cutoff= MaximumPrunedCorrelation(Theory)
Theories= Theories∪ Theory

return(Theories)

Figure 7. Algorithm to generate all theories learnable byFossil

add the candidate literal to the clause at hand or not. This property can be used to generate
all theories that could be learned byFossil with any setting of the cutoff parameter (see
figure 7).

The basic idea behind this algorithm is the following: Assume thatFossil is trying to
learn a theory with a cutoff of 1.0. Unless there is one literal in the background knowledge
that perfectly discriminates between positive and negative examples, we will not find a
literal with a correlation of 1.0 and thus learn an empty theory.

However, we can remember the literal that had the maximum correlation and use this
information in the following way: If we make another call toFossil with the cutoff set
to exactly this maximum correlation value, at least one literal (the one that produced this
maximum correlation) will be added to the theory, typically followed by several other literals
that have a correlation value higher than the new cutoff. The result is a new theory, which
usually is a little more complex than its predecessor. Again, the maximum correlation of
the literals that have been cut off will be remembered. Obviously, for all values between the
old cutoff and the new maximum, the same theory would have been learned. Thus, we can
choose this value as the cutoff for the next run. It can also be expected that the new theory
will be more complex than the previous one. This process is repeated until at a certain setting
of theCutoff no further literal is pruned (MaximumPrunedCorrelation = 0.0) and
thus the most complex theory has been reached.

Figure 8 shows a complete series of theories generated byFossil from 1000 noise-free
examples in the domain of distinguishing legal from illegal positions in the KRK endgame
domain.3 Any setting of the cutoff parameter would yield one of these six theories (on the
same training set). It can be seen that the theories are generated roughly in a simple-to-
complex order (top-down).9 As simpler theories can be expected to be more accurate in
noisy domains, the best theories will be learned after a few iterations. Therefore, it may
be possible to stop the generation of theories as soon as a reasonably good theory has been
found in order to avoid expensive learning of many overly-specific theories. This may
save a lot of work, as figure 4 indicates. Besides, it is also possible to reuse parts of the
previous theory (up to the point where the highest cutoff has occurred) so that the total cost
of generating a complete series of concept descriptions may not be much higher than the
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C = 1.0

illegal(A,B,C,D,E,F) :- fail.

67.04 % correct (0 % positive, 100 % negative)

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E.

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E.
illegal(A,B,C,D,E,F) :- adjacent(A, E), adjacent(B, F).

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E.
illegal(A,B,C,D,E,F) :- adjacent(A, E), adjacent(B, F).
illegal(A,B,C,D,E,F) :- A = C, B = D.
illegal(A,B,C,D,E,F) :- D = F, adjacent(C, E).
illegal(A,B,C,D,E,F) :- D = F, not X < A.

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E, not A = C.
illegal(A,B,C,D,E,F) :- adjacent(A, E), adjacent(B, F).
illegal(A,B,C,D,E,F) :- C = E, A < X, not B < D.

illegal(A,B,C,D,E,F) :- D = F, not B = D.
illegal(A,B,C,D,E,F) :- C = E, not A = C.
illegal(A,B,C,D,E,F) :- adjacent(A, E), adjacent(B, F).
illegal(A,B,C,D,E,F) :- C = E, A < X, not B < D.
illegal(A,B,C,D,E,F) :- A = C, B = D.
illegal(A,B,C,D,E,F) :- C = E, A < Y, not B < F.
illegal(A,B,C,D,E,F) :- D = F, adjacent(C, E).
illegal(A,B,C,D,E,F) :- D = F, not Z < A).

88.42 % correct (65.53 % positive, 99.67 % negative)

97.60 % correct (93.39 % positive, 99.67 % negative)
99.36 % correct (98.48 % positive, 99.79 % negative)

99.32 % correct (98.60 % positive, 99.67 % negative)

97.42 % correct (92.60 % positive, 99.79 % negative)

C = 0.5101

C = 0.4995

C = 0.3871

C = 0.3927

C = 0.3607

C = 0.0

Figure 8. Generating a series of theories from 1000 noise-free examples in the KRK domain
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procedure TDP(Examples, SplitRatio)

Cutoff = 1.0
BestTheory= ∅
BestAccuracy= 0.0
SplitExamples(SplitRatio, Examples, GrowingSet, PruningSet)
repeat

NewTheory =Fossil(GrowingSet,Cutoff)
NewAccuracy= Accuracy(NewTheory,PruningSet)
if NewAccuracy> BestAccuracy

BestTheory = NewTheory
BestAccuracy= NewAccuracy
LowerBound= BestAccuracy− StandardError(BestAccuracy,PruningSet)

Cutoff = MaximumPrunedCorrelation(NewTheory)
until (NewAccuracy< LowerBound) or (Cutoff= 0.0)
loop

NewTheory =BestSimplification(Theory,PruningSet)
if Accuracy(NewTheory,PruningSet)< Accuracy(Theory,PruningSet)

exit loop

Theory = NewTheory
return(Theory)

Figure 9. Combining pre- and post-pruning withTop-Down Pruning.

cost of generating merely the most complex theory (at least in cases where the cutoff occurs
near the end of the learned theory, which is frequently the case).

After some experimentation where we tried to automatically select the best theory
(Fürnkranz, 1994a) or the best cutoff parameter (in a way very similar to CART’s cost-
complexity pruning (Breiman, Friedman, Olshen, & Stone, 1984)), we found that pre-
pruning is too rigid and decided to combine it with the flexibility of post-pruning. The
algorithm of figure 9 uses the basic algorithm of figure 7 not to find the best theory, but
— in order to avoid too simple theories — to find the most complex among all reasonably
good theories that can be learned byFossil. This theory is then used as a starting point
for a post-pruning phase. More precisely, theories are generated in a simple-to-complex
order and evaluated on a designated test set of the data (usually1/3). When the measured
classification accuracy of one of the theories falls below the measured accuracy of the best
theory so far minus onestandard error, no more theories will be generated and the last
theory within the 1-SE margin will be submitted to the REP algorithm as described in sec-
tion 4.1.10 Usually this theory will be a little too complex, but simple enough so that the
final theory can be found with a small amount of post-pruning. Because of this initial top-
down simple-to-complex search for a good theory, we have named the methodTop-Down
Pruning(TDP).

If this algorithm succeeds in finding a starting theory that is close to the final theory, we
can expect our algorithm to be faster than basic REP, because the initial search for a good
starting theory will

• speed up the growing phase, because the most expensive theories will not be generated,11
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• speed up the pruning phase, because pruning starts from a simpler theory and thus the
number of possible pruning operations is smaller.

In preliminary experiments, it turned out that lowering the cutoff may in some cases
result in specializations of the rules learned in the previous iteration without learning new
rules that would cover the positive examples that are no longer covered by the specialized
rules. This may result in theories that cover only a small fraction of the available positive
examples, which can cause a sudden drop in accuracy. The problem can be easily avoided
by forcing TDP to learn additional rules that cover the remaining examples. Thus, we have
added the constraint that only theories that cover at least 50% of the positive examples in the
growing set will be evaluated on the pruning set. If a theory does not satisfy this criterion,
it will be improved by adding more clauses. This is achieved by lowering the cutoff to the
value that would be needed to start a new clause.12 If the clauses that are added during this
phase do not improve the predictive accuracy on the pruning set, they will be removed in
the post-pruning phase. A possible danger of this technique is that it can force TDP to learn
overly complex theories in domains where only a small fraction of the positive examples
can be covered by predictive rules.

5.2. Experimental results

We have comparedTop-Down Pruning(TDP) to two algorithms,Fossil* and Reduced
Error Pruning (REP) in the KRK endgame domain with 10% artificial noise added.3

Fos-

sil* is a version of the pre-pruning algorithmFossil that cheats by consulting the test
data during learning. It uses the algorithm described in figure 7 to generate all theories
learnable byFossil from the entire training set, evaluates each of them on the test set of
5000 noise-free examples, and selects the one with the highest accuracy. We have included
this algorithm as an upper bound for the accuracy that could have been obtained by learning
with pre-pruning alone.

All algorithms have been implemented in PROLOG. REP and TDP split the training data
into the same growing (ca.2/3) and pruning sets (ca.1/3). In order to exclude possible
influences from the underlying learning algorithm, we ran REP usingFossil with Cutoff
= 0.0 as its basic learning module.13

Table 1.Accuracy in the KRK domain with 10% noise.

Average Accuracy (10 runs) 100 250 500 750

Fossil* 92.64 95.68 98.00 98.28
REP Before Pruning 84.84 86.88 87.11 89.21

After Pruning 94.67 96.72 97.80 98.51
TDP Before Pruning 89.15 91.02 95.89 95.85

After Pruning 95.14 95.93 98.29 98.70
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Table 1 shows the results of some experiments with varying training set sizes. TDP
is constantly better thanFossil* which shows that it would outperformFossil in this
domain with any (fixed or dynamic) setting of the cutoff parameter. REP is also slightly
better thanFossil* which confirms earlier results where REP was shown to outperform
Foil (Brunk & Pazzani, 1991). Thus, using post-pruning in some form seems to be a
reasonable approach for improving accuracy.

REP was only better than TDP at a training set size of 250, where TDP heavily over-
pruned in one of the 10 cases: TDP started off with a theory that was 98.42% correct,
but unfortunately one of the literals had no support in the pruning set and consequently
was pruned, thus yielding a theory with a mere81.34%. This did not happen to REP
because it got caught in a91.36% correct theory, and did not even get to the98.42% theory.
With increasing training set sizes, TDP seems to be slightly superior to REP, although the
differences are not statistically significant.

A comparison of the accuracies of the intermediate theories reveals that TDP starts with
significantly better theories than REP. Obviously, the top-down search for better starting
theories is successful. In particular at higher training set sizes, REP sometimes gets stuck
in a local optimum and returns bad theories. However, we have seen above that REP may
profit from this in some rare cases. TDP is less likely to get stuck in a local optimum during
pruning because it starts with an initial theory that is already quite close to the final theory.
The problem of local optima with greedy hill-climbing is also not likely to appear in TDP’s
top-down search for a starting theory, because (at least in this domain) the intermediate
theories usually appear after only a few iterations of TDP’s top-level loop.

Table 2.Run-time in the KRK domain with 10% noise.

Average Run-time (10 runs) 100 250 500 750

REP Growing 6.66 75.22 397.17 845.76
Pruning 2.93 91.46 1248.48 2922.66
Total 9.59 166.68 1645.65 3768.42

TDP Growing 7.23 51.37 80.17 190.66
Pruning 1.24 22.49 16.39 151.52
Total 8.47 73.86 96.56 342.18

Comparing the run-times of REP and TDP (table 2) confirms that TDP is significantly
faster than REP. In fact, it is even faster than REP’s initial phase of overfitting alone. TDP
only has to find a few fairly simple theories, while REP generates huge theories that fit
all the noisy examples. Expectedly, with increasing training set sizes, the costs of REP
are dominated by the pruning process. TDP on the other hand, even manages to decrease
pruning time with training set sizes 250 to 500. The significant run-time increase from 500
to 750 examples is mainly due to one of the 10 sets, where a much too complex theory
was learned in 855.94 CPU secs. growing and 1399.35 CPU secs. pruning time. For the
remaining 9 sets, the average run-time was 116.74 CPU secs. for growing and 12.88 CPU
secs. for pruning.
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These results confirm that combining pre- and post-pruning is a good idea. TDP is more
accurate than pre-pruning and faster than post-pruning in both, learningandpruning. The
starting theories learned byFossil become increasingly more accurate as the training set
grows, which means that not only learning will be faster, but also less and less pruning has
to be performed. The problem of the incompatibility of separate-and-conquer learning with
post-pruning as discussed in section 4.2 is also alleviated when the starting theory is already
close to the final theory. Nevertheless, we have seen that in one of the experiments with a
training set size of 750 the search for a good initial theory failed resulting in an increase in
pruning time by two orders of magnitude. Motivated by the observation that TDP might
fail occasionally, because we have only alleviated, but not solved the problems discussed
in section 4.2, we have developed an algorithm thatintegratespre- and post-pruning.

6. Integrating pre- and post-pruning

The algorithm that we will present in this section was mainly motivated by the observation
that post-pruning is incompatible with the separate-and-conquer learning strategy as we
have discussed in section 4.2. The problem is that post-pruning approaches do not take
into account that pruning a clause will generalize it so that it will eventually cover more
examples of the training set. This may have a considerable influence on the evaluation of
candidate literals for subsequent clauses.

6.1. Incremental Reduced Error Pruning

The basic idea ofIncremental Reduced Error Pruning(I-REP) is that instead of first growing
a complete concept description and pruning it thereafter, each individual clause will be
pruned right after it has been generated. This ensures that the algorithm can remove the
training examples that are covered by the pruned clause before subsequent clauses are
learned thereby preventing these examples from influencing the learning of subsequent
clauses.

Figure 10 shows pseudo-code for this algorithm. As usual, the current set of training
examples is split into a growing (usually 2/3) and a pruning set (usually 1/3). However,
not an entire theory, but only one clause is learned from the growing set. Then, literals
are deleted from this clause in a greedy fashion until any further deletion would decrease
the accuracy of this clause on the pruning set.14 Single pruning steps can be performed by
submitting a one-clause theory to the sameBestSimplification subroutine used in REP
or, as in our implementation, one can use a more complex pruning operator that considers
every literal in a clause for pruning. The best rule found by repeatedly pruning the original
clause is added to the concept description and all covered positive and negative examples
are removed from the training — growingand pruning — set. The remaining training
instances are then redistributed into a new growing and a new pruning set to ensure that
each of the two sets contains the predefined percentage of the remaining examples. From
these sets the next clause is learned. When the predictive accuracy of the pruned clause is
below the predictive accuracy of the empty clause (i.e., the clause with the bodyfail), the
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procedure I-REP (Examples, SplitRatio)

Theory = ∅
while Positive(Examples)6= ∅

Clause= ∅
SplitExamples(SplitRatio, Examples, GrowingSet, PruningSet)
Cover= GrowingSet
while Negative(Cover) 6= ∅

Clause= Clause∪ FindLiteral(Clause,Cover)
Cover= Cover(Clause,Cover)

loop

NewClause =BestSimplification(Clause,PruningSet)
if Accuracy(NewClause,PruningSet)< Accuracy(Clause,PruningSet)

exit loop

Clause = NewClause
if Accuracy(Clause,PruningSet)≤ Accuracy(fail,PruningSet)

exit while

Theory= Theory∪ Clause
Examples= Examples− Cover

return(Theory)

Figure 10. Integrating pre- and post-pruning withIncremental Reduced Error Pruning

clause is not added to the concept description and I-REP returns the learned clauses. Thus,
the accuracy of the pruned clauses on the pruning set also serves as a stopping criterion.
Post-pruning methods are used as pre-pruning heuristics.

Because this algorithm does not prune on the entire set of clauses, but prunes each one
of them successively, we have named itIncremental Reduced Error Pruning(I-REP). We
can expect I-REP to improve upon post-pruning algorithms, because it is aimed at solving
the problems we discussed in section 4.2:

Complexity: Using the same assumptions as in the analysis of the complexity of REP
(section 4.2), we will show that I-REP’s asymptotic complexity isO(n log2 n), n being
the size of the training set. The cost of growing one clause in REP isO(n logn), because
for selecting each of theΘ(logn) literals. Thus, a constant number of conditions is
tested againstO(n) examples. I-REP considerseveryliteral in the clause for pruning.
Therefore, each of theΘ(logn) literals has to be evaluated on theΘ(n) examples in the
pruning set until the final clause has been found, i.e., at mostO(logn) times. Thus, the
cost of pruning one clause isO(n log2 n). Assuming that I-REP stops when the correct
theory of constant size has been found, the overall cost is alsoO(n log2 n). This is
significantly lower than the cost of growing an overfitting theory which has been shown
to beΩ(n2 logn) under the same assumptions (Cohen, 1993).

Bottom-up hill-climbing: LikeGrow, I-REP uses a top-down approach instead of REP’s
bottom-up search: Final theories are not found by removing unnecessary clauses and
literals from an overly complex theory, but by repeatedly adding clauses to an ini-
tially empty theory. However, whileGrow first generates an overfitting theory and
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thereafter selects the best generalized clauses from this theory, I-REP selects the best
generalization of a clause right after the clause has been learned.

Separate-and-conquer strategy: I-REP learns the clauses in the order in which they will
be used by a PROLOG interpreter. Before subsequent rules are learned, each clause is
completed (learnedandpruned) and all covered examples are removed. Therefore, the
I-REP approach eliminates the problem of incompatibility between the separate-and-
conquer learning strategy and the reduced-error pruning strategy.

6.2. Experimental results

Table 3 shows a comparison of the run-times of post-pruning algorithms and I-REP in the
KRK domain with 10% artificial noise added.3 All algorithms usedFoil’s information
gain criterion as a search heuristic. The columnInitial Rule Growthrefers to the initial
growing phase that REP andGrow have in common, while the columns REP andGrow

give the results for the pruning phases only. The total run-time of REP (Grow) is the
run-time ofInitial Rule Growthplus the run-time of REP (Grow). In I-REP, both phases
are tightly integrated so that only the total value of the run-time can be given.

Table 3.Average run-time

Domain
Initial

Rule Growth REP Grow I-REP

KRK-100 (10%) 8.36 2.44 1.66 4.20
KRK-250 (10%) 91.31 104.98 19.81 17.30
KRK-500 (10%) 456.56 1578.16 100.81 46.32
KRK-750 (10%) 1142.78 7308.84 361.41 83.64
KRK-1000 (10%) 2129.89 23125.34 806.89 115.35

It is obvious that I-REP is significantly faster than the post-pruning algorithms. In fact,
it is always faster than REP’s andGrow’s initial growing phase alone, because I-REP
avoids learning an intermediate overfitting theory. It can also be seen thatGrow’s pruning
algorithm is much faster than REP’s, which confirms earlier results (Cohen, 1993).

In order to get an idea on the asymptotic complexity of the various algorithms, we have
performed a log-log analysis (Cameron-Jones, 1996). Note that the KRK domain can be
reformulated as a binary problem using examples that are represented with one attribute for
each possible condition that can appear in the body of a rule (Lavraˇc, Džeroski, & Grobelnik,
1991). Noise was simulated by flipping the classification of a fixed percentage of the train-
ing examples. Thus, this domain conforms to the assumptions made in the complexity
analysis of I-REP and REP. The asymptotic time complexity of an algorithm can be em-
pirically estimated by dividing the differences between the logarithms of two run-times by
the differences of the logarithms of the corresponding training set sizes. Table 4 suggests
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Table 4.Log-log analysis of the run-times on noisy KRK data.

Domain
Initial

Rule Growth REP Grow I-REP

100-250 2.61 4.11 2.71 1.54
250-500 2.32 3.91 2.35 1.42
500-750 2.26 3.78 3.15 1.46
750-1000 2.16 4.00 2.79 1.12

that I-REP has a sub-quadratic time complexity. It is consistent with our conjecture that
I-REP’s time complexity isO(n log2 n). In general, the results we get are consistent with
previous analyses (Cohen, 1993, Cameron-Jones, 1996). In particular, the evidence sup-
ports the result that REP has a complexity ofΩ(n4) and that the initial rule growing phase
isO(n2 logn). It also confirms the main result of Cameron-Jones (1996), namely that the
asymptotic complexity ofGrow is also above the asymptotic complexity of the initial rule
growing phase. However, in all our experiments the absolute values for the run-time of
Grow’s pruning phase were negligible compared to the initial overfitting phase.

REP often gets caught in local maxima and is not able to simplify the theories to the right
level. Interestingly we have observed that, despite its top-down search strategy,Grow also
occasionally overfits the noise in the data, a phenomenon that has also been predicted by
Cameron-Jones (1996). I-REP, on the other hand, will stop generating clauses whenever
it has found a clause that has no support in the pruning set. Therefore, I-REP can be
expected to have very fast run-times on purely random data (where REP andGrow are
most expensive), because there is a high chance that the first clause will not fit any of the
examples in the pruning set. This will stop the algorithm immediately without accepting a
single clause and thus effectively avoid overfitting.

Table 5.Average accuracy

Domain
Initial

Rule Growth REP Grow I-REP

KRK-100 (10%) 85.29 91.77 91.60 84.55
KRK-250 (10%) 83.79 96.29 95.91 98.34
KRK-500 (10%) 84.29 97.62 98.17 98.48
KRK-750 (10%) 85.17 97.47 98.31 98.86
KRK-1000 (10%) 85.65 98.01 98.30 99.55

In terms of accuracy (table 5), I-REP also is superior to the post-pruning algorithms,
although it seems to be more sensitive to small training set sizes. The reason for this is that
a bad distribution of growing and pruning examples may cause I-REP’s stopping criterion
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to prematurely stop learning. Redistributing the examples into new growing and pruning
sets before learning a new clause cannot help when there is little redundancy in the data
because of small sample sizes. However, at larger example set sizes I-REP outperforms the
other algorithms.

7. Experimental evaluation

We have tested the algorithms presented in this paper on a variety of domains. All al-
gorithms except Quinlan’sFoil (Quinlan & Cameron-Jones, 1995), which is written in
C,15 were implemented in SICStus PROLOG and had major parts of their implementations
in common. In particular, they shared the same interface to the data and used the same
procedures for splitting the training sets. Mode, type and symmetry information about the
background relations was used to restrict the search space wherever applicable. Information
gain was used as a search heuristic for REP,Grow and I-REP, andFossil’s correlation
heuristic was used inFossil and TDP. Run-times were measured in CPU seconds for SUN
SPARCstations ELC. All algorithms were tested on identical training and test sets.

7.1. Summary of the experiments in the KRK domain

First, we will summarize the experiments in the domain of recognizing illegal chess positions
in the KRK endgame (Muggleton, Bain, Hayes-Michie, & Michie, 1989). This domain has
become a standard benchmark problem for relational learning systems, as it cannot be solved
in a trivial way by propositional learning algorithms, because the background knowledge
has to contain relations likeX = Y, X < Y, andadjacent(X,Y).

Class noise in the training instances has been generated according to theclassification
noise process(Angluin & Laird, 1988). In this model, a noise level ofη means that the sign
of each example is reversed with a probability ofη.16 The learned concepts were evaluated
on test sets with 5000 noise-free examples.Foil 6.1 was used with its default settings
except that the-V option was set to 0 to avoid the introduction of new variables, which is
not necessary for this task. All the other algorithms had their argument modes declared
as input, which has the same effect. All algorithms were trained on identical sets of sizes
from 100 to 1000 examples. All reported results are averages over 10 runs, except for the
training set size 1000, where only 6 runs have been performed, because of the complexity
of this task for some algorithms.

Figure 11 shows curves for accuracy and run-times over 5 different training set sizes.
I-REP — after a bad start with only 84.55% accuracy on 100 examples — achieves the
highest accuracy. In predictive accuracy,Foil did poorly. Its stopping criterion (encoding
length) is dependent on the training set size and thus too weak to effectively prevent overfit-
ting the noise. From 1000 examplesFoil learns concepts that have more than 20 rules and
are incomprehensible (F¨urnkranz, 1994a). I-REP, on the other hand, consistently produces
a 99.57% correct, understandable 4-rule approximation of the correct concept description.
This theory correctly identifies all illegal positions, but is over-general for legal positions
where the white king is between the black king and the white rook thus blocking a check
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that would make the position illegal when white is to move. The post-pruning approaches
REP andGrow are about equal, and TDP does not lose accuracy compared to them. All
three, however, only rarely find the 4th rule that specifies that the white king and the white
rook must not be on the same square. It can also be seen that the pre-pruning approach
taken byFossil needs many examples in order to make its heuristic pruning decisions
more reliable.

On the other hand,Fossil is the fastest algorithm.Foil, although implemented in C,
is slower, because with increasing training set sizes it learns more complex theories than
Fossil (Fürnkranz, 1994a). REP proves that its pruning method is very inefficient.Grow

has an efficient pruning algorithm, but still suffers from the expensive overfitting phase.
TDP is faster than REP andGrow, because it is able to start post-pruning with a much
better theory than REP orGrow.

I-REP, however, learns a much better theory and is faster than both the growing and the
pruning phase of TDP. In fact, I-REP is only a little slower thanFossil, but much more
accurate. Thus, it can be said that it truly combines the merits of post-pruning (accuracy)
and pre-pruning (efficiency). This also becomes apparent in figure 12, where accuracy
(with the standard deviations observed in the different runs) is plotted against the logarithm
of the run-time.
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Table 6.Experiments in the mesh domain

Algorithm Accuracy Only+ Run-time

Foil 6.3 90.27 23.32 20.74
Fossil 90.97 0.00 15.99
Initial Theory (REP &Grow) 87.42 31.47 6355.69
REP 88.74 26.86 28263.80
Grow 89.27 23.75 9880.32
Initial Theory (TDP) 88.99 28.89 3762.94
TDP 89.12 23.89 10111.27
I-REP 90.14 12.81 471.25

7.2. The mesh domain

We have also tested our algorithms on the finite element mesh design problem first stud-
ied and described in detail by Dolˇsak and Muggleton (1992). The problem of mesh de-
sign is to break complex objects into a number of finite elements in order to be able
to compute pressure and deformations when a force is applied to the object. The basic
problem during manual mesh design is the selection of an optimal number of finite ele-
ments on the edges of the structure. Several authors have tried ILP methods on this prob-
lem (Dolšak & Muggleton, 1992, Dˇzeroski & Bratko, 1992, Quinlan, 1994). The available
background knowledge consists of an attribute-based description of the edges and of topo-
logical relations between the edges.

The setup of our experiments was the same as in a previous study (Quinlan, 1994), i.e.,
we learned rules from four of the five objects in the data set and tested the learned concept
on the fifth object. For estimating predictive accuracy, we have tested whether the learned
theory can derive a given number of finite elements on an edge (Quinlan, 1994), while
Džeroski and Bratko (1992) have used the percentage of all positive instances for which the
learned theory predicts the right number of finite elements on an edge. To make sure that
the learned theories are not over-general, we also had to test them on negative examples.
In order to allow a rough comparison to earlier results (Dˇzeroski & Bratko, 1992), we have
added the accuracy on the positive examples to table 6, which can serve as an upper bound
of the accuracy that would have been obtained by our algorithms using the other evaluation
procedure. The given run-times are the total run-times (learningandpruning).

I-REP again is clearly faster than all post-pruning algorithms without losing predictive
accuracy. TDP finds a more accurate starting theory than REP in a shorter time span.
Consequently, its pruning time is much shorter than REP’s and the learned theory is a little
more accurate. TDP’s pruning phase is slower thanGrow’s pruning phase, although it
starts with a simpler theory. The reason for this is that our implementation of TDP uses
REP for pruning. It might be worthwhile to further improve TDP by using the fasterGrow

algorithm for its post-pruning phase. However, this also indicates that in this domain TDP’s
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initial top-down search for a good starting theory is not as effective as in the KRK domain,
because more work was left for the post-pruning phase.

The only PROLOG algorithm faster and more accurate than I-REP isFossil with a cutoff
of 0.3. It is even faster than the C implementation ofFoil 6.3. However,Fossil couldn’t
discover any significant regularities in the data and thus consistently learned empty theories
(all literals in the background knowledge had a correlation below 0.3). Nevertheless, it is
still the best algorithm in terms of accuracy (followed closely byFoil 6.3 and I-REP) which
shows how poorly all algorithms perform in this domain (all are belowFossil, i.e., below
default accuracy). We hope to be able to improve our results in this domain by trying the
faster algorithms on the new data set (Dolˇsak, Bratko, & Jezernik, 1994) which contains a
total of 10 objects (and thus hopefully provides more redundancy). However, the new data
set was too big for the post-pruning algorithms of this comparative study.

An interesting phenomenon is that although pruning literals generalizes the clauses so
that more positive examples will be covered, the pruned theories as a whole cover fewer
positive examples. Obviously, for many learned rules generalization by deleting irrelevant
literals did not improve accuracy as much as did specializing the theory by removing the
entire rule. This can also be taken as evidence that most regularities detected by the basic
separate-and-conquer induction module were not very reliable.

7.3. Propositional data sets

We have also experimented with data sets from the UCI repository of Machine Learning
databases that have previously been used to compare propositional learning algorithms.
Holte (1993) gives a summary of the results achieved by various algorithms on some of the
most commonly used data sets of the UCI repository and a short description of these sets. We
selected nine of them for our experiments. The remaining sets were not used because either
the description of the data sets was unclear or they had more than two classes, which could
not be handled by our implementation of the learning algorithms. In theLymphography2
data set, we removed the 6 examples for the classes “normal find” and “fibrosis” in order to
get a 2-class problem. All other data were used in the same way as Holte (1993) has used
them. For all data sets, the task was to learn a definition for the minority class.

In all data sets, the background knowledge consisted of< and= relations with one variable
and one constant argument. Wherever appropriate, comparisons between two different
variables of the same data type were allowed as well. In all experiments, the value of
Fossil’s cutoff parameter was set to0.3. Foil 6.3 was used with its default parameter
settings. It has been previously shown thatFoil is competitive with propositional decision
tree learning algorithms (Cameron-Jones & Quinlan, 1993). Run-times for all data sets
were measured in CPU seconds for SUN SPARCstations ELC except for theMushroom
andKRKPa7data sets which are quite big and thus had to be run on a considerably faster
SPARCstation S10. All experiments followed Holte’s setup, i.e., the algorithms were trained
on2/3 of the data and tested on the remaining1/3. However, only 10 runs were performed
for each algorithm on each data set.

The results on predictive accuracy can be found in table 7. Each line shows the average
accuracy on the 10 sets and its standard deviation. To allow a more structured analysis, the
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Table 7.Accuracy results for some propositional data sets.

Sick Euthyroid Breast Cancer Hepatitis

Foil 6.3 96.59± 0.67 67.59± 3.48 77.04± 5.62

Fossil 97.58± 0.42 73.33± 4.81 76.07± 6.08

No Pruning 96.25± 0.54 65.39± 4.44 73.66± 5.25

REP 97.55± 0.34 69.97± 4.01 76.96± 4.14

Grow 97.52± 0.50 68.46± 4.98 76.45± 4.47

No Pruning (TDP) 97.37± 0.54 67.98± 5.86 76.33± 3.58

TDP 97.49± 0.45 71.74± 4.00 79.42± 4.09

I-REP 97.48± 0.53 70.89± 5.51 78.66± 2.95

Glass (G2) Votes Votes (VI)

Foil 6.3 75.78± 7.11 92.50± 1.94 84.30± 2.99

Fossil 77.32± 5.05 95.35± 1.23 89.07± 2.78

No Pruning 75.24± 5.54 94.69± 1.99 86.46± 2.12

REP 77.76± 4.54 95.84± 1.47 86.72± 3.65

Grow 75.63± 4.94 95.63± 1.43 87.49± 3.53

No Pruning (TDP) 77.23± 4.23 95.33± 1.29 87.57± 1.43

TDP 75.90± 6.51 95.22± 1.92 85.85± 2.76

I-REP 76.31± 5.15 94.75± 1.84 87.25± 3.45

KRKPa7 Lymphography2 Mushroom

Foil 6.3 98.48± 0.57 81.04± 5.08 100.00± 0.00

Fossil 95.17± 2.80 87.22± 4.63 99.96± 0.03

No Pruning 97.92± 0.61 83.25± 5.05 100.00± 0.01

REP 97.84± 0.57 81.85± 5.12 99.97± 0.05

Grow 97.48± 0.43 82.10± 5.57 99.57± 0.69

No Pruning (TDP) 96.26± 1.95 83.73± 5.80 100.00± 0.01

TDP 96.41± 1.97 81.86± 4.63 99.97± 0.05

I-REP 97.74± 0.38 79.17± 4.66 99.97± 0.04

9 domains can be grouped into 3 subclasses: In the 3 domains of the upper part of table 7,
overfitting is harmful, i.e., REP’s post-pruning phase substantially improves the concepts
learned by the initial overfitting phase.17 The middle part contains domains where pruning
does not make a significant difference, and in the domains of the lower part pruning cannot
be recommended as exemplified by theMushroomdata, where the overfitting phases learned
100% correct concept descriptions that were substantially better than those learned by all
pruning algorithms (with the exception ofFoil). TheMushroomandKRKPa7domains
are known to be free of noise, while the three medical domains are noisy. We thus assume
that our grouping of the domains corresponds to the amount of noise contained in the data.

I-REP and TDP outperform the post-pruning algorithms in the three noisy domains,
perform inconsistently in domains where pruning does not make much difference and seem
to be harmful in noise-free domains. Compared to the other algorithms, post-pruning
counter-intuitively performs better in domains with low noise levels. This indicates that
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Table 8.Run-time results for some propositional data sets.

Sick Euthyroid Breast Cancer Hepatitis

Foil 6.3 132.08 1.83 0.76
Fossil 891.40 19.68 217.40
No Pruning 4554.65 169.70 101.66
REP 5040.23 257.29 102.28
Grow 4635.26 183.67 102.39
No Pruning (TDP) 2965.51 154.05 115.41
TDP 3010.97 173.31 116.24
I-REP 970.70 28.97 60.40

Glass (G2) Votes Votes (VI)

Foil 6.3 0.31 1.68 2.83
Fossil 216.42 105.22 88.94
No Pruning 91.89 50.45 124.47
REP 93.31 57.41 163.26
Grow 93.11 53.84 137.49
No Pruning (TDP) 85.56 60.88 105.67
TDP 87.39 62.17 113.05
I-REP 63.01 22.43 38.78

KRKPa7 Lymphography2 Mushroom

Foil 6.3 78.35 0.67 40.34
Fossil 2383.61 20.79 3538.19
No Pruning 4063.80 17.05 1878.51
REP 4243.08 18.81 1931.75
Grow 4219.00 18.42 2088.81
No Pruning (TDP) 2368.28 18.66 4595.23
TDP 2376.28 20.27 4656.31
I-REP 1785.50 10.14 2493.77

overfitting can not entirely be prevented with post-pruning alone. Similarly,Foil 6.3
outperforms TDP and I-REP in noise-free domains while they in turn seem to be preferable
in noisy domains. This confirms previous findings thatFoil’s encoding length criterion
does not effectively prevent overfitting (F¨urnkranz, 1994a), but also shows that TDP’s and
I-REP’s bias towards simple theories may be too strong. The latter has also been noted by
Cohen (1995), where it has been shown that RIPPER, an algorithm that improves I-REP
by employing different pruning and stopping criteria and an additional post-pruning phase,
outperforms C4.5rules on a variety of domains.18 Pre-pruning withFossil at a cutoff of 0.3
gives a good overall performance which confirms the robustness of this algorithm towards
different noise-levels (F¨urnkranz, 1994a).

Some differences in accuracies are statistically significant (measured with a standard
two-tailedt-test): In theKRKPa7chess endgame domain,Foil 6.3 was significantly better
than the other five algorithms at the 1% error level (for REP and TDP only at5%), while



PRUNING ALGORITHMS FOR RULE LEARNING 167

Fossil performed significantly worse (5%) than all other algorithms except TDP. On the
other hand,Fossil outperformed all other algorithms exceptGrow in theLymphography2
domain (5%, I-REP even with 1%). In theVotes (VI)domain,Fossil was better thanFoil

(1%) and TDP (5%). Foil performed significantly worse (1%) than all other algorithms
in the VotesandSick Euthyroiddomains. It was also worse (5%) than TDP andFossil

in theBreast Cancerdomain, but better thanFossil(1%) in theMushroomdomain. No
significant differences could be found in theGlass (G2)andHepatitisdomains.

While the results vary in terms of accuracy the results for run-times are quite consistent
(see table 8):Foil 6.3 is clearly the fastest algorithm, but as it is implemented in C this
comparison is not entirely fair. Among the PROLOG algorithms I-REP is the fastest in 6 of
the 9 test problems, while it is second-best in 2 of the remaining 3. The table also confirms
thatGrow is usually faster than REP. TDP’s results are not consistent, but it is faster than
REP andGrow in some cases, which indicates that its initial top-down search for a good
starting theory does not overfit the data as much as the initial rule growing phase of REP
andGrow does.Fossil’s run-times are very unstable. It is the fastest algorithm on some
data sets, but by far the slowest on data sets, where not much pruning has to be performed
and thus the algorithms that only learn from2/3 of the data can be faster.

8. Related work

I-REP and TDP have been deliberately designed to closely resemble the basic post-pruning
algorithm, REP. For instance, we have already pointed out that TDP can be further improved
by usingGrow instead of REP in TDP’s post-pruning phase. In the case of I-REP, we have
chosen accuracy of a one-clause theory on the pruning set as the basic pruning and stopping
criterion in order to get a fair comparison to REP and to concentrate on the methodological
differences between post-pruning and I-REP’s integration of pre- and post-pruning. An im-
portant advantage of post-pruning methods is that the way of evaluating theories (or rules in
I-REP’s case) is entirely independent from the basic learning algorithm. Other pruning and
stopping criteria can further improve the performance and eliminate weaknesses. Currently,
we are investigating pruning criteria based on theMinimal Description Lengthprinciple
(Rissanen, 1978), which have the merit of avoiding the loss of information that is caused by
the need of splitting the training set into separate growing and pruning sets (Quinlan, 1994).

The accuracy-based pruning criterion used in I-REP basically optimizes the difference
between the positive and negative examples covered by a clause.14 Cohen (1995) points out
that this measure can lead to undesirable choices. For example, it would prefer a rule that
covers 2000 positive and 1000 negative instances over a rule that covers 1000 positive and
only 1 negative instance. As an alternative, Cohen (1995) suggests to divide this difference
by the total number of covered examples and shows that this choice leads to significantly
better results. In addition he shows that an alternative clause stopping criterion based on
theory description length and an additional post-pruning phase can further improve I-REP.
The resulting algorithm, RIPPER, is competitive with C4.5rules18 without losing I-REP’s
efficiency. Cohen (1995) has also noted that accuracy estimates for low-coverage rules
will have a high variance and therefore I-REP is likely to over-generalize in domains that
are susceptible to theSmall Disjuncts Problem(Holte, Acker, & Porter, 1989). This is a
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generalization of our observation that I-REP performs badly in domains with small training
sets.

Fürnkranz (1995b) has made another attempt to improve I-REP. Just as I-REP avoids
learning an overfitting theory by pruning at the clause level instead of the theory level, we
have investigated a way of taking this further by pruning at the literal level to avoid learning
overfitting clauses. The resulting algorithm, I2-REP, splits the training set into two sets
of equal size, selects the best literal for each of them, and chooses the one that has the
higher accuracy on the entire training set. This procedure is quite similar to a two-fold
cross-validation, which has been shown to give reliable results for ranking classifiers at
low training set sizes (Weiss & Indurkhya, 1994). Literals are added to the clause until the
best choice does not improve the accuracy of the clause, and clauses are added as long
as this betters the accuracy of the theory. I2-REP seems to be a little more stable than
I-REP with small training sets, but no significant run-time improvements can be observed
(Fürnkranz, 1995a). It even appears to be a little slower than I-REP, although asymptotically
both algorithms exhibit approximately the same subquadratic behavior.

9. Conclusion

In this paper, we have discussed different pruning techniques for separate-and-conquer rule
learning algorithms. Conventional pre-pruning methods are very efficient, but not always as
accurate as post-pruning methods. The latter, however, tend to be very expensive, because
they have to learn an over-specialized theory first. In addition to their inefficiency we
have pointed out a fundamental incompatibility of post-pruning methods with separate-
and-conquer rule learning systems. As a solution, we have investigated two methods for
combining and integrating pre- and post-pruning algorithms.

TDP performs an initial top-down search through the hypothesis space to find a theory that
overfits the training data, but is still fairly simple. This theory is then used as a starting theory
for a subsequent post-pruning phase that tries to simplify this theory to an appropriate level.
A systematic algorithm for varying the cutoff parameter of the pre-pruning algorithmFossil

provides an efficient way of generating theories in an approximate simple-to-complex order
so that a good starting theory can often be found in considerably shorter time than would
be needed to generate a complex theory that fits all of the training examples. Of course,
the pruning phase for the simpler theory is also shorter than the pruning phase for the more
complex theory.

I-REP integrates pre- and post-pruning into one algorithm. Instead of post-pruning entire
theories, each rule is pruned right after it has been learned. Our experiments show that
this approach effectively combines the efficiency of pre-pruning with the accuracy of post-
pruning in noisy domains. As real-world databases are typically large and noisy, and thus
require learning algorithms that are both efficient and noise-tolerant, I-REP seems to be an
appropriate choice for this purpose.
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Notes

1. For encodingp positive andn negative training instances, one needs at leastlog2(p+n)+log2(

(
p+ n
p

)
)

bits. Literals can be encoded by specifying one out ofr relations (log2(r) bits), one out ofv variabilizations
(log2(v) bits) and whether it is negated or not (1 bit). The sum of these terms for alll literals of the clause
has to be reduced bylog2(l!) since the ordering of literals within a clause is in general irrelevant.

2. LRS = 2 × (p log

( p
p+n
P

P+N

)
+ n log

( n
p+n
N

P+N

)
) wherep andn are the number of positive and negative

examples covered by the clause andP andN are the number of positive and negative examples in the entire
training set.

3. A short description of the KRK domain along with the experimental setup can be found at the beginning of
section 7.1.

4. Recall thatg(x) = Ω(f(x)) denotes thatg grows at least as fast asf , i.e., f forms a lower bound forg.
Similarly, g(x) = O(f(x)) means thatf forms an upper bound forg. We will also useg(x) = Θ(f(x))
to denote thatf andg have the same asymptotic growth, i.e., there exist two constantsc1 andc2 such that
c1f(x) ≤ g(x) ≤ c2f(x).

5. The number of attributes will only be independent ofn as long as the training set size does not approach
the complete enumeration of the domain, in which case there will belogn attributes. As this is in gen-
eral not the case for practical purposes, we feel this assumption is justified. Also note that our assumptions
include many first-order learning problems, such as the KRK domain, that can be transformed into a propo-
sitional representation by using one binary attribute for each literal that can appear in the body of a rule
(Lavrač, Džeroski, & Grobelnik, 1991). Their applicability to domains that require numerical threshold con-
ditions and/or full first-order horn-clause logic is not so straight-forward.

6. Cameron-Jones (1996) points out that for training sets that approach towards complete enumeration, chances
increase that rules may cover more than one random example, but derives compatible results for this case.

7. One may argue that the number of simplifications decreases significantly when the theories get simpler, so
that the total cost will be lower. However, until half of the rules have been deleted, the size of the concepts is
greater thann/2, so that we still haveΘ(n) simplifications forΩ(n) iterations.

8. Cohen used a slightly different version of REP that prunes to an empty theory and selects the best pruned theory
thereafter, while the original version stops pruning when the accuracy on the pruning set goes up. However,
it is unlikely that these changes have been disadvantageous for REP.

9. The theories are not learned in a strict simple-to-complex order, but simpler theories can also follow more
complex theories (see e.g. theories 4 and 5 of figure 8). However, the general trend is that the complexity of
the learned theories increases with lower settings of the cutoff parameter. Note that more complex theories
often contain several specializations of rules of a simpler theory, so that simpler theories are often also more
general than complex theories.
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10. This is based on an idea in CART (Breiman, Friedman, Olshen, & Stone, 1984), where the mostgeneralpruned
decision tree within one SE of the best will be selected. The standard classification error can be computed

with SE =

√
p×(1−p)

N
wherep is the probability of misclassification (estimated on the pruning set) andN

is the number of examples in the pruning set.
11. This argument, of course, only applies to noisy domains. In non-noisy domains, the most complex theory will

in general be the most precise and thus our algorithm will be slower, because it has to generate all theories
down to a cutoff of 0.0.

12. Note that this method may yield a theory that is not learnable by the originalFossil as the value of the cutoff
parameter is changed during the generation of the theory.

13. The version of REP usingFossil did better than the version usingFoil. In section 7.1 we show the results
obtained by using an implementation ofFoil to generate the initial theory for REP.

14. We measure the accuracy of a clause withp+(N−n)
P+N

, the percentage of the covered positive examples plus
the uncovered negative examples in the set of examples that have not yet been covered by the previous clauses.
We chose this function because it is directly related to the accuracy-based optimization used in REP. AsP and
N are constant for all versions of a clause, pruning will basically maximize the differencep− n. A problem
with this measure is discussed in section 8.

15. The current version ofFoil is available by anonymous ftp fromftp.cs.su.oz.au or 129.78.8.1 file
name,pub/foilN.sh for some integerN.

16. Note that often a different model is used in the literature, where a noise level ofη means that the sign of
each example is randomly chosen with a probability ofη. A noise level ofη in our experiments is roughly
equivalent to a noise level of2η in the other model. In our model, 50% noise means totally random data, while
100% noise would result in a training set with reversed class labels.

17. It might be (justifiably) argued here that we should have used a separate run with no pruning on all of the data
for a comparison. Our main purpose, however, was to compare different pruning approaches and not evaluate
the merits of pruning by itself. The results for the initial overfitting phases of REP,Grow and TDP may
nevertheless be an indicator for the latter (and they come at no additional cost).

18. C4.5rules is an algorithm that generates propositional rules from decision trees that have been learned with
C4.5 (Quinlan, 1993).
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